Archive for indirect inference

ABC in Lapland²

Posted in Mountains, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , on March 16, 2023 by xi'an

On the second day of our workshop, Aki Vehtari gave a short talk about his recent works on speed up post processing by importance sampling a simulation of an imprecise version of the likelihood until the desired precision is attained, importance corrected by Pareto smoothing¹⁵. A very interesting foray into the meaning of practical models and the hard constraints on computer precision. Grégoire Clarté (formerly a PhD student of ours at Dauphine) stayed on a similar ground of using sparse GP versions of the likelihood and post processing by VB²³ then stir and repeat!

Riccardo Corradin did model-based clustering when the nonparametric mixture kernel is missing a normalizing constant, using ABC with a Wasserstein distance and an adaptive proposal, with some flavour of ABC-Gibbs (and no issue of label switching since this is clustering). Mixtures of g&k models, yay! Tommaso Rigon reconsidered clustering via a (generalised Bayes à la Bissiri et al.) discrepancy measure rather than a true model, summing over all clusters and observations a discrepancy between said observation and said cluster. Very neat if possibly costly since involving distances to clusters or within clusters. Although she considered post-processing and Bayesian bootstrap, Judith (formerly [?] Dauphine)  acknowledged that she somewhat drifted from the theme of the workshop by considering BvM theorems for functionals of unknown functions, with a form of Laplace correction. (Enjoying Lapland so much that I though “Lap” in Judith’s talk was for Lapland rather than Laplace!!!) And applications to causality.

After the (X country skiing) break, Lorenzo Pacchiardi presented his adversarial approach to ABC, differing from Ramesh et al. (2022) by the use of scoring rule minimisation, where unbiased estimators of gradients are available, Ayush Bharti argued for involving experts in selecting the summary statistics, esp. for misspecified models, and Ulpu Remes presented a Jensen-Shanon divergence for selecting models likelihood-freely²², using a test statistic as summary statistic..

Sam Duffield made a case for generalised Bayesian inference in correcting errors in quantum computers, Joshua Bon went back to scoring rules for correcting the ABC approximation, with an importance step, while Trevor Campbell, Iuri Marocco and Hector McKimm nicely concluded the workshop with lightning-fast talks in place of the cancelled poster session. Great workshop, in my most objective opinion, with new directions!

ABC in Lapland

Posted in Mountains, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , on March 15, 2023 by xi'an

Greetings from Levi, Lapland! Sonia Petrone beautifully started the ABC workshop with a (the!) plenary Sunday night talk on quasi-Bayes in the spirit of both Fortini & Petrone (2020) and the more recent Fong, Holmes, and Walker (2023). The talk got me puzzled by wondering the nature of convergence, in that it happens no matter what the underlying distribution (or lack thereof) of the data is, in that, even without any exchangeability structure, the predictive is converging. The quasi stems from a connection with the historical Smith and Markov (1978) sequential update approximation for the posterior attached with mixtures of distributions. Which itself relates to both Dirichlet posterior updates and Bayesian bootstrap à la Newton & Raftery. Appropriate link when the convergence seems to stem from the sequence of predictives instead of the underlying distribution, if any, pulling Bayes by its own bootstrap…! Chris Holmes also talked the next day about this approach, esp. about a Bayesian approach to causality that does not require counterfactuals, in connection with a recent arXival of his (on my reading list).

Carlo Alberto presented both his 2014 SABC (simulated annealing) algorithm with a neat idea of reducing waste in the tempering schedule and a recent summary selection approach based on an auto-encoder function of both y and noise to reduce to sufficient statistic. A similar idea was found in Yannik Schälte’s talk (slide above). Who was returning to Richard Wiilkinson’s exact ABC¹³ with adaptive sequential generator, also linking to simulated annealing and ABC-SMC¹² to the rescue. Notion of amortized inference. Seemingly approximating data y with NN and then learn parameter by a normalising flow.

David Frazier talked on Q-posterior²³ approach, based on Fisher’s identity, for approximating score function, which first seemed to require some exponential family structure on a completed model (but does not, after discussing with David!), Jack Jewson on beta divergence priors²³ for uncertainty on likelihoods, better than KLD divergence on e-contamination situations, any impact on ABC? Masahiro Fujisawa back to outliers impact on ABC, again with e-contaminations (with me wondering at the impact of outliers on NN estimation).

In the afternoon session (due to two last minute cancellations, we skipped (or [MCMC] skied) one afternoon session, which coincided with a bright and crispy day, how convenient! ), Massi Tamborino (U of Warwick) FitzHugh-Nagumo process, with impossibilities to solve the inference problem differently, for instance Euler-Maruyama does not always work, numerical schemes are inducing a bias. Back to ABC with the hunt for a summary that get rid of the noise, as in Carlo Alberto’s work. Yuexi Wang talked about her works on adversarial ABC inspired from GANs. Another instance where noise is used as input. True data not used in training? Imke Botha discussed an improvement to ensemble Kalman inversion which, while biased, gains over both regular SMC timewise and ensemble Kalman inversion in precision, and Chaya Weerasinghe focussed on Bayesian forecasting in state space models under model misspecification, via approximate Bayesian computation, using an auxiliary model to produce summary statistics as in indirect inference.

dynamic mixtures and frequentist ABC

Posted in Statistics with tags , , , , , , , , , , , , , , , on November 30, 2022 by xi'an

This early morning in NYC, I spotted this new arXival by Marco Bee (whom I know from the time he was writing his PhD with my late friend Bernhard Flury) and found he has been working for a while on ABC related problems. The mixture model he considers therein is a form of mixture of experts, where the weights of the mixture components are not constant but functions on (0,1) of the entry as well. This model was introduced by Frigessi, Haug and Rue in 2002 and is often used as a benchmark for ABC methods, since it is missing its normalising constant as in e.g.

f(x) \propto p(x) f_1(x) + (1-p(x)) f_2(x)

even with all entries being standard pdfs and cdfs. Rather than using a (costly) numerical approximation of the “constant” (as a function of all unknown parameters involved), Marco follows the approximate maximum likelihood approach of my Warwick colleagues, Javier Rubio [now at UCL] and Adam Johansen. It is based on the [SAME] remark that under a uniform prior and using an approximation to the actual likelihood the MAP estimator is also the MLE for that approximation. The approximation is ABC-esque in that a pseudo-sample is generated from the true model (attached to a simulation of the parameter) and the pair is accepted if the pseudo-sample stands close enough to the observed sample. The paper proposes to use the Cramér-von Mises distance, which only involves ranks. Given this “posterior” sample, an approximation of the posterior density is constructed and then numerically optimised. From a frequentist view point, a direct estimate of the mode would be preferable. From my Bayesian perspective, this sounds like a step backwards, given that once a posterior sample is available, reconnecting with an approximate MLE does not sound highly compelling.

likelihood-free and summary-free?

Posted in Books, Mountains, pictures, Statistics, Travel with tags , , , , , , , , , , , , , on March 30, 2021 by xi'an

My friends and coauthors Chris Drovandi and David Frazier have recently arXived a paper entitled A comparison of likelihood-free methods with and without summary statistics. In which they indeed compare these two perspectives on approximate Bayesian methods like ABC and Bayesian synthetic likelihoods.

“A criticism of summary statistic based approaches is that their choice is often ad hoc and there will generally be an  inherent loss of information.”

In ABC methods, the recourse to a summary statistic is often advocated as a “necessary evil” against the greater evil of the curse of dimension, paradoxically providing a faster convergence of the ABC approximation (Fearnhead & Liu, 2018). The authors propose a somewhat generic selection of summary statistics based on [my undergrad mentors!] Gouriéroux’s and Monfort’s indirect inference, using a mixture of Gaussians as their auxiliary model. Summary-free solutions, as in our Wasserstein papers, rely on distances between distributions, hence are functional distances, that can be seen as dimension-free as well (or criticised as infinite dimensional). Chris and David consider energy distances (which sound very much like standard distances, except for averaging over all permutations), maximum mean discrepancy as in Gretton et al. (2012), Cramèr-von Mises distances, and Kullback-Leibler divergences estimated via one-nearest-neighbour formulas, for a univariate sample. I am not aware of any degree of theoretical exploration of these functional approaches towards the precise speed of convergence of the ABC approximation…

“We found that at least one of the full data approaches was competitive with or outperforms ABC with summary statistics across all examples.”

The main part of the paper, besides a survey of the existing solutions, is to compare the performances of these over a few chosen (univariate) examples, with the exact posterior as the golden standard. In the g & k model, the Pima Indian benchmark of ABC studies!, Cramèr does somewhat better. While it does much worse in an M/G/1 example (where Wasserstein does better, and similarly for a stereological extremes example of Bortot et al., 2007). An ordering inversed again for a toad movement model I had not seen before. While the usual provision applies, namely that this is a simulation study on unidimensional data and a small number of parameters, the design of the four comparison experiments is very careful, eliminating versions that are either too costly or too divergence, although this could be potentially criticised for being unrealistic (i.e., when the true posterior is unknown). The computing time is roughly the same across methods, which essentially remove the call to kernel based approximations of the likelihood. Another point of interest is that the distance methods are significantly impacted by transforms on the data, which should not be so for intrinsic distances! Demonstrating the distances are not intrinsic…

sequential neural likelihood estimation as ABC substitute

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on May 14, 2020 by xi'an

A JMLR paper by Papamakarios, Sterratt, and Murray (Edinburgh), first presented at the AISTATS 2019 meeting, on a new form of likelihood-free inference, away from non-zero tolerance and from the distance-based versions of ABC, following earlier papers by Iain Murray and co-authors in the same spirit. Which I got pointed to during the ABC workshop in Vancouver. At the time I had no idea as to autoregressive flows meant. We were supposed to hold a reading group in Paris-Dauphine on this paper last week, unfortunately cancelled as a coronaviral precaution… Here are some notes I had prepared for the meeting that did not take place.

A simulator model is a computer program, which takes a vector of parameters θ, makes internal calls to a random number generator, and outputs a data vector x.”

Just the usual generative model then.

“A conditional neural density estimator is a parametric model q(.|φ) (such as a neural network) controlled by a set of parameters φ, which takes a pair of datapoints (u,v) and outputs a conditional probability density q(u|v,φ).”

Less usual, in that the outcome is guaranteed to be a probability density.

“For its neural density estimator, SNPE uses a Mixture Density Network, which is a feed-forward neural network that takes x as input and outputs the parameters of a Gaussian mixture over θ.”

In which theoretical sense would it improve upon classical or Bayesian density estimators? Where are the error evaluation, the optimal rates, the sensitivity to the dimension of the data? of the parameter?

“Our new method, Sequential Neural Likelihood (SNL), avoids the bias introduced by the proposal, by opting to learn a model of the likelihood instead of the posterior.”

I do not get the argument in that the final outcome (of using the approximation within an MCMC scheme) remains biased since the likelihood is not the exact likelihood. Where is the error evaluation? Note that in the associated Algorithm 1, the learning set is enlarged on each round, as in AMIS, rather than set back to the empty set ∅ on each round.

…given enough simulations, a sufficiently flexible conditional neural density estimator will eventually approximate the likelihood in the support of the proposal, regardless of the shape of the proposal. In other words, as long as we do not exclude parts of the parameter space, the way we propose parameters does not bias learning the likelihood asymptotically. Unlike when learning the posterior, no adjustment is necessary to account for our proposing strategy.”

This is a rather vague statement, with the only support being that the Monte Carlo approximation to the Kullback-Leibler divergence does converge to its actual value, i.e. a direct application of the Law of Large Numbers! But an interesting point I informally made a (long) while ago that all that matters is the estimate of the density at x⁰. Or at the value of the statistic at x⁰. The masked auto-encoder density estimator is based on a sequence of bijections with a lower-triangular Jacobian matrix, meaning the conditional density estimate is available in closed form. Which makes it sounds like a form of neurotic variational Bayes solution.

The paper also links with ABC (too costly?), other parametric approximations to the posterior (like Gaussian copulas and variational likelihood-free inference), synthetic likelihood, Gaussian processes, noise contrastive estimation… With experiments involving some of the above. But the experiments involve rather smooth models with relatively few parameters.

“A general question is whether it is preferable to learn the posterior or the likelihood (…) Learning the likelihood can often be easier than learning the posterior, and it does not depend on the choice of proposal, which makes learning easier and more robust (…) On the other hand, methods such as SNPE return a parametric model of the posterior directly, whereas a further inference step (e.g. variational inference or MCMC) is needed on top of SNL to obtain a posterior estimate”

A fair point in the conclusion. Which also mentions the curse of dimensionality (both for parameters and observations) and the possibility to work directly with summaries.

Getting back to the earlier and connected Masked autoregressive flow for density estimation paper, by Papamakarios, Pavlakou and Murray:

“Viewing an autoregressive model as a normalizing flow opens the possibility of increasing its flexibility by stacking multiple models of the same type, by having each model provide the source of randomness for the next model in the stack. The resulting stack of models is a normalizing flow that is more flexible than the original model, and that remains tractable.”

Which makes it sound like a sort of a neural network in the density space. Optimised by Kullback-Leibler minimisation to get asymptotically close to the likelihood. But a form of Bayesian indirect inference in the end, namely an MLE on a pseudo-model, using the estimated model as a proxy in Bayesian inference…