Archive for indirect inference

likelihood-free and summary-free?

Posted in Books, Mountains, pictures, Statistics, Travel with tags , , , , , , , , , , , , , on March 30, 2021 by xi'an

My friends and coauthors Chris Drovandi and David Frazier have recently arXived a paper entitled A comparison of likelihood-free methods with and without summary statistics. In which they indeed compare these two perspectives on approximate Bayesian methods like ABC and Bayesian synthetic likelihoods.

“A criticism of summary statistic based approaches is that their choice is often ad hoc and there will generally be an  inherent loss of information.”

In ABC methods, the recourse to a summary statistic is often advocated as a “necessary evil” against the greater evil of the curse of dimension, paradoxically providing a faster convergence of the ABC approximation (Fearnhead & Liu, 2018). The authors propose a somewhat generic selection of summary statistics based on [my undergrad mentors!] Gouriéroux’s and Monfort’s indirect inference, using a mixture of Gaussians as their auxiliary model. Summary-free solutions, as in our Wasserstein papers, rely on distances between distributions, hence are functional distances, that can be seen as dimension-free as well (or criticised as infinite dimensional). Chris and David consider energy distances (which sound very much like standard distances, except for averaging over all permutations), maximum mean discrepancy as in Gretton et al. (2012), Cramèr-von Mises distances, and Kullback-Leibler divergences estimated via one-nearest-neighbour formulas, for a univariate sample. I am not aware of any degree of theoretical exploration of these functional approaches towards the precise speed of convergence of the ABC approximation…

“We found that at least one of the full data approaches was competitive with or outperforms ABC with summary statistics across all examples.”

The main part of the paper, besides a survey of the existing solutions, is to compare the performances of these over a few chosen (univariate) examples, with the exact posterior as the golden standard. In the g & k model, the Pima Indian benchmark of ABC studies!, Cramèr does somewhat better. While it does much worse in an M/G/1 example (where Wasserstein does better, and similarly for a stereological extremes example of Bortot et al., 2007). An ordering inversed again for a toad movement model I had not seen before. While the usual provision applies, namely that this is a simulation study on unidimensional data and a small number of parameters, the design of the four comparison experiments is very careful, eliminating versions that are either too costly or too divergence, although this could be potentially criticised for being unrealistic (i.e., when the true posterior is unknown). The computing time is roughly the same across methods, which essentially remove the call to kernel based approximations of the likelihood. Another point of interest is that the distance methods are significantly impacted by transforms on the data, which should not be so for intrinsic distances! Demonstrating the distances are not intrinsic…

sequential neural likelihood estimation as ABC substitute

Posted in Books, Kids, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on May 14, 2020 by xi'an

A JMLR paper by Papamakarios, Sterratt, and Murray (Edinburgh), first presented at the AISTATS 2019 meeting, on a new form of likelihood-free inference, away from non-zero tolerance and from the distance-based versions of ABC, following earlier papers by Iain Murray and co-authors in the same spirit. Which I got pointed to during the ABC workshop in Vancouver. At the time I had no idea as to autoregressive flows meant. We were supposed to hold a reading group in Paris-Dauphine on this paper last week, unfortunately cancelled as a coronaviral precaution… Here are some notes I had prepared for the meeting that did not take place.

A simulator model is a computer program, which takes a vector of parameters θ, makes internal calls to a random number generator, and outputs a data vector x.”

Just the usual generative model then.

“A conditional neural density estimator is a parametric model q(.|φ) (such as a neural network) controlled by a set of parameters φ, which takes a pair of datapoints (u,v) and outputs a conditional probability density q(u|v,φ).”

Less usual, in that the outcome is guaranteed to be a probability density.

“For its neural density estimator, SNPE uses a Mixture Density Network, which is a feed-forward neural network that takes x as input and outputs the parameters of a Gaussian mixture over θ.”

In which theoretical sense would it improve upon classical or Bayesian density estimators? Where are the error evaluation, the optimal rates, the sensitivity to the dimension of the data? of the parameter?

“Our new method, Sequential Neural Likelihood (SNL), avoids the bias introduced by the proposal, by opting to learn a model of the likelihood instead of the posterior.”

I do not get the argument in that the final outcome (of using the approximation within an MCMC scheme) remains biased since the likelihood is not the exact likelihood. Where is the error evaluation? Note that in the associated Algorithm 1, the learning set is enlarged on each round, as in AMIS, rather than set back to the empty set ∅ on each round.

…given enough simulations, a sufficiently flexible conditional neural density estimator will eventually approximate the likelihood in the support of the proposal, regardless of the shape of the proposal. In other words, as long as we do not exclude parts of the parameter space, the way we propose parameters does not bias learning the likelihood asymptotically. Unlike when learning the posterior, no adjustment is necessary to account for our proposing strategy.”

This is a rather vague statement, with the only support being that the Monte Carlo approximation to the Kullback-Leibler divergence does converge to its actual value, i.e. a direct application of the Law of Large Numbers! But an interesting point I informally made a (long) while ago that all that matters is the estimate of the density at x⁰. Or at the value of the statistic at x⁰. The masked auto-encoder density estimator is based on a sequence of bijections with a lower-triangular Jacobian matrix, meaning the conditional density estimate is available in closed form. Which makes it sounds like a form of neurotic variational Bayes solution.

The paper also links with ABC (too costly?), other parametric approximations to the posterior (like Gaussian copulas and variational likelihood-free inference), synthetic likelihood, Gaussian processes, noise contrastive estimation… With experiments involving some of the above. But the experiments involve rather smooth models with relatively few parameters.

“A general question is whether it is preferable to learn the posterior or the likelihood (…) Learning the likelihood can often be easier than learning the posterior, and it does not depend on the choice of proposal, which makes learning easier and more robust (…) On the other hand, methods such as SNPE return a parametric model of the posterior directly, whereas a further inference step (e.g. variational inference or MCMC) is needed on top of SNL to obtain a posterior estimate”

A fair point in the conclusion. Which also mentions the curse of dimensionality (both for parameters and observations) and the possibility to work directly with summaries.

Getting back to the earlier and connected Masked autoregressive flow for density estimation paper, by Papamakarios, Pavlakou and Murray:

“Viewing an autoregressive model as a normalizing flow opens the possibility of increasing its flexibility by stacking multiple models of the same type, by having each model provide the source of randomness for the next model in the stack. The resulting stack of models is a normalizing flow that is more flexible than the original model, and that remains tractable.”

Which makes it sound like a sort of a neural network in the density space. Optimised by Kullback-Leibler minimisation to get asymptotically close to the likelihood. But a form of Bayesian indirect inference in the end, namely an MLE on a pseudo-model, using the estimated model as a proxy in Bayesian inference…

ABC in Les Diablerets

Posted in Statistics with tags , , , , , , , , , , on February 14, 2017 by xi'an

Since I could not download the slides of my ABC course in Les Diablerets in one go, I broke them by chapters as follows. (Warning: there is very little novelty in those slides, except for the final part on consistency.)

Although I did not do it on purpose (!), starting with indirect inference and other methods inspired from econometrics induced some discussion in the first hour of the course with econometricians in the room. Including Elvezio Ronchetti.

I also regretted piling too much material in the alphabet soup, as it was too widespread for a new audience. And as I could not keep the coherence of the earlier parts by going thru so many papers at once. Especially since I was a bit knackered after a day of skiing….

I managed to get to the final convergence chapter on the last day, even though I had to skip some of the earlier material. Which should be reorganised anyway as the parts between model choice with random forests and inference with random forests are not fully connected!

Bayesian Indirect Inference and the ABC of GMM

Posted in Books, Statistics, University life with tags , , , , , , , , , , on February 17, 2016 by xi'an

“The practicality of estimation of a complex model using ABC is illustrated by the fact that we have been able to perform 2000 Monte Carlo replications of estimation of this simple DSGE model, using a single 32 core computer, in less than 72 hours.” (p.15)

Earlier this week, Michael Creel and his coauthors arXived a long paper with the above title, where ABC relates to approximate Bayesian computation. In short, this paper provides deeper theoretical foundations for the local regression post-processing of Mark Beaumont and his coauthors (2002). And some natural extensions. But apparently considering one univariate transform η(θ) of interest at a time. The theoretical validation of the method is that the resulting estimators converge at speed √n under some regularity assumptions. Including the identifiability of the parameter θ in the mean of the summary statistics T, which relates to our consistency result for ABC model choice. And a CLT on an available (?) preliminary estimator of η(θ).

The paper also includes a GMM version of ABC which appeal is less clear to me as it seems to rely on a preliminary estimator of the univariate transform of interest η(θ). Which is then randomized by a normal random walk. While this sounds a wee bit like noisy ABC, it differs from this generic approach as the model is not assumed to be known, but rather available through an asymptotic Gaussian approximation. (When the preliminary estimator is available in closed form, I do not see the appeal of adding this superfluous noise. When it is unavailable, it is unclear why a normal perturbation can be produced.)

“[In] the method we study, the estimator is consistent, asymptotically normal, and asymptotically as efficient as a limited information maximum likelihood estimator. It does not require either optimization, or MCMC, or the complex evaluation of the likelihood function.” (p.3)

Overall, I have trouble relating the paper to (my?) regular ABC in that the outcome of the supported procedures is an estimator rather than a posterior distribution. Those estimators are demonstrably endowed with convergence properties, including quantile estimates that can be exploited for credible intervals, but this does not produce a posterior distribution in the classical Bayesian sense. For instance, how can one run model comparison in this framework? Furthermore, each of those inferential steps requires solving another possibly costly optimisation problem.

“Posterior quantiles can also be used to form valid confidence intervals under correct model specification.” (p.4)

Nitpicking(ly), this statement is not correct in that posterior quantiles produce valid credible intervals and only asymptotically correct confidence intervals!

“A remedy is to choose the prior π(θ) iteratively or adaptively as functions of initial estimates of θ, so that the “prior” becomes dependent on the data, which can be denoted as π(θ|T).” (p.6)

This modification of the basic ABC scheme relying on simulation from the prior π(θ) can be found in many earlier references and the iterative construction of a better fitted importance function rather closely resembles ABC-PMC. Once again nitpicking(ly), the importance weights are defined therein (p.6) as the inverse of what they should be.

consistency of ABC

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , on August 25, 2015 by xi'an

Along with David Frazier and Gael Martin from Monash University, Melbourne, we have just completed (and arXived) a paper on the (Bayesian) consistency of ABC methods, producing sufficient conditions on the summary statistics to ensure consistency of the ABC posterior. Consistency in the sense of the prior concentrating at the true value of the parameter when the sample size and the inverse tolerance (intolerance?!) go to infinity. The conditions are essentially that the summary statistics concentrates around its mean and that this mean identifies the parameter. They are thus weaker conditions than those found earlier consistency results where the authors considered convergence to the genuine posterior distribution (given the summary), as for instance in Biau et al. (2014) or Li and Fearnhead (2015). We do not require here a specific rate of decrease to zero for the tolerance ε. But still they do not hold all the time, as shown for the MA(2) example and its first two autocorrelation summaries, example we started using in the Marin et al. (2011) survey. We further propose a consistency assessment based on the main consistency theorem, namely that the ABC-based estimates of the marginal posterior densities for the parameters should vary little when adding extra components to the summary statistic, densities estimated from simulated data. And that the mean of the resulting summary statistic is indeed one-to-one. This may sound somewhat similar to the stepwise search algorithm of Joyce and Marjoram (2008), but those authors aim at obtaining a vector of summary statistics that is as informative as possible. We also examine the consistency conditions when using an auxiliary model as in indirect inference. For instance, when using an AR(2) auxiliary model for estimating an MA(2) model. And ODEs.