**A** recent paper by Mikelson and Khammash found on bioRxiv considers the (paradoxical?) mixture of nested sampling and intractable likelihood. They however cover only the case when a particle filter or another unbiased estimator of the likelihood function can be found. Unless I am missing something in the paper, this seems a very costly and convoluted approach when pseudo-marginal MCMC is available. Or the rather substantial literature on computational approaches to state-space models. Furthermore simulating under the lower likelihood constraint gets even more intricate than for standard nested sampling as the parameter space is augmented with the likelihood estimator as an extra variable. And this makes a constrained simulation the harder, to the point that the paper need resort to a Dirichlet process Gaussian mixture approximation of the constrained density. It thus sounds quite an intricate approach to the problem. (For one of the realistic examples, the authors mention a 12 hour computation on a 48 core cluster. Producing an approximation of the evidence that is not unarguably stabilised, contrary to the above.) Once again, not being completely up-to-date in sequential Monte Carlo, I may miss a difficulty in analysing such models with other methods, but the proposal seems to be highly demanding with respect to the target.

## Archive for intractable likelihood

## likelihood free nested sampling

Posted in Books, Statistics with tags auxiliary particle filter, Bayesian inference, bioRxiv, computing time, Dirichlet process Gaussian mixture, intractable likelihood, MCMC, Monte Carlo Statistical Methods, nested sampling, pseudo-marginal MCMC, state space model, statistical evidence on April 26, 2019 by xi'an## easy-to-use empirical likelihood ABC

Posted in Statistics, University life with tags ABC, ABCel, data cloning, empirical likelihood, generalised method of moments, intractable likelihood, pseudo-marginal MCMC, SAME algorithm on October 23, 2018 by xi'an**A** newly arXived paper from a group of researchers at NUS I wish we had discussed when I was there last month. As we wrote this empirical ABCe paper in PNAS with Kerrie Mengersen and Pierre Pudlo in 2012. Plus the SAME paper with Arnaud Doucet and Simon Godsill ten years earlier, which the authors prefer to call data cloning in continuation of the more recent Lele et al. (2007). They could actually have used my original denomination of prior feedback (1992? I remember presenting the idea at Camp Casella in Cornell that summer) as well! Actually, I am not certain invoking prior feedback is quite necessary since this is a form of simulated method of moments as well.

Now, did we really assume that some moments of the distribution were analytically available, although the likelihood was not?! Even before going through the paper, it dawned on me that these theoretical moments could have been simulated instead, since the model is a generative one: for a given parameter value, a direct Monte Carlo approximation to the exact moment can be produced and can serve as a constraint for the empirical likelihood definition. I am surprised and aggrieved that we would not think of this empirical likelihood version of a method of moments. Which is central to the current paper. In the sense that, were the parameter exact, the differences between the moments based on the actual data x⁰ and the moments based on m replicas of the simulated data x¹,x²,… have mean zero, meaning the moment constraint is immediately available. Meaning an empirical likelihood is easily constructed, replacing the actual likelihood in an MCMC scheme, albeit at a rather high computing cost. Congratulations to the authors for uncovering this possibility that we missed!

“The summary statistics in this example were judiciously chosen.”

One point in the paper on which I disagree with the authors is the argument that MCMC sampling based on an empirical likelihood can be seen as an implementation of the pseudo-marginal Metropolis-Hastings method. The major difference in my opinion is that there is no unbiasedness here (and no generic result that indicates convergence to the exact posterior as the number of simulations grows to infinity). The other point unclear to me is about the selection of summaries [or moments] for implementing the method, which seems to be based on their performances in the subsequent estimation, performances that are hard to assess properly in intractable likelihood cases. In the last example of stereological extremes (not covered in our paper), for instance, the output is compared with the parallel synthetic likelihood result.

## asymptotic properties of ABC now appeared

Posted in Books, Statistics, University life with tags ABC, ABC convergence, Approximate Bayesian computation, approximate Bayesian inference, Biometrika, intractable likelihood, summary statistics on September 1, 2018 by xi'an**O**ur paper with David Frazier, Gael Martin and Judith Rousseau has appeared in print in Biometrika, Volume 105, Issue 3, 1 September 2018, Pages 593–607, almost exactly two years after it was submitted. I am quite glad with the final version, though, and grateful for the editorial input, as the paper clearly characterises the connection between the tolerance level ε and the convergence rate of the summary statistic to its parameter identifying asymptotic mean. Asymptotic in the sample size, that is.

## parallelizable sampling method for parameter inference of large biochemical reaction models

Posted in Books, Statistics with tags approximate Bayesian inference, Dirichlet mixture priors, hidden Markov models, intractable likelihood, nested sampling, particle filters, particle MCMC, SMC, SMC² on June 18, 2018 by xi'an**I** came across this older (2016) arXiv paper by Jan Mikelson and Mustafa Khammash [antidated as of April 25, 2018] as another version of nested sampling. The novelty of the approach is in applying nested sampling for approximating the likelihood function in the case of involved hidden Markov models (although the name itself does not appear in the paper). This is an interesting proposal, even though there is a fairly large and very active literature on computational approaches to such objects, from sequential Monte Carlo (SMC) to particle MCMC (pMCMC), to SMC².

“We found a way to efficiently sample parameter vectors (particles) from the super level set of the likelihood (sets of particles with a likelihood equal to or higher than some threshold) corresponding to an increasing sequence of thresholds” (p.2)

The approach here is an aggregate of nested sampling and particle filters (SMC), filters that are paradoxically employed in approximating the likelihood function itself, thus called repeatedly as the value of the parameter θ changes, unless I am confused, when it seems to me that, once started with particle filters, the authors could have used them all the way to the upper level (through, again, SMC²). Instead, and that brings a further degree of (uncorrected) approximation to the procedure, a Dirichlet process prior is used to estimate Gaussian mixture approximations to the true posterior distribution(s) on the (super) level sets. Now, approximating a distribution that is zero outside a compact set [the prior restricted to the likelihood being larger than by a distribution with an infinite support does not a priori sound like a particularly enticing idea. Note also that there is no later correction for using the mixture approximation to the restricted prior. (The method also involves an approximation of the (Lebesgue) volume of the level sets that may be poor in higher dimensions.)

“DP-GMM estimations work very well in high dimensional spaces and since we use rejection sampling to obtain samples from the level set by sampling from the DP-GMM estimation, the estimation error does not get propagated through iterations.” (p.13)

One aspect of the paper that puzzles me is the use of a rejection sampler to produce new parameters simulations from a given (super) level set, as this involves a lower bound M on the Gaussian mixture approximation over this level set. If a Gaussian mixture approximation is available, there is apparently no need for this as it can be sampled directly and values below the threshold can be disposed of. It is also unclear why the error does not propagate from one level to the next, if only because of the connection between the successive particle approximations.

## ABC’ptotics on-line

Posted in Statistics with tags ABC, ABC convergence, Approximate Bayesian computation, approximate Bayesian inference, Biometrika, intractable likelihood, Paul Fearnhead, summary statistics on June 14, 2018 by xi'anOur paper on Asymptotic properties of ABC with David Frazier, Gael Martin, and Judith Rousseau, is now on-line on the Biometrika webpage. Coincidentally both papers by Wentao Li and Paul Fearnhead on ABC’ptotics are published in the June issue of the journal.

Approximate Bayesian computation allows for statistical analysis using models with intractable likelihoods. In this paper we consider the asymptotic behaviour of the posterior distribution obtained by this method. We give general results on the rate at which the posterior distribution concentrates on sets containing the true parameter, the limiting shape of the posterior distribution, and the asymptotic distribution of the posterior mean. These results hold under given rates for the tolerance used within the method, mild regularity conditions on the summary statistics, and a condition linked to identification of the true parameters. Implications for practitioners are discussed.

## running ABC when the likelihood is available

Posted in Statistics with tags ABC, intractable likelihood, latent variable models, MCMC, MCMC convergence, refereeing on September 19, 2017 by xi'an**T**oday I refereed a paper where the authors used ABC to bypass convergence (and implementation) difficulties with their MCMC algorithm. And I am still pondering whether or not this strategy makes sense. If only because ABC needs to handle the same complexity and the same amount of parameters as an MCMC algorithm. While shooting “in the dark” by using the prior or a coarse substitute to the posterior. And I wonder at the relevance of simulating new data when the [true] likelihood value [at the observed data] can be computed. This would sound to me like the relevant and unique “statistics” worth considering…