Archive for likelihood-free methods

a versatile alternative to ABC

Posted in Books, Statistics with tags , , , , , , , , , on July 25, 2023 by xi'an

“We introduce the Fixed Landscape Inference MethOd, a new likelihood-free inference method for continuous state-space stochastic models. It applies deterministic gradient-based optimization algorithms to obtain a point estimate of the parameters, minimizing the difference between the data and some simulations according to some prescribed summary statistics. In this sense, it is analogous to Approximate Bayesian Computation (ABC). Like ABC, it can also provide an approximation of the distribution of the parameters.”

I quickly read this arXival by Monard et al. that is presented as an alternative to ABC, while outside a Bayesian setup. The central concept is that a deterministic gradient descent provides an optimal parameter value when replacing the likelihood with a distance between the observed data and simulated synthetic data indexed by the current value of the parameter (in the descent). In order to operate the descent the synthetic data is assumed to be available as a deterministic transform of the parameter value and of a vector of basic random objects, eg Uniforms. In order to make the target function differentiable, the above Uniform vector is fixed for the entire gradient descent. A puzzling aspect of the paper is that it seems to compare the (empirical) distribution of the resulting estimator with a posterior distribution, unless the comparison is with the (empirical) distribution of the Bayes estimators. The variability due to the choice of the fixed vector of basic random objects does not seem to be taken into account either, apparently. Furthermore, the method is presented as able to handle several models at once, which I find difficult to fathom as (a) the random vectors behind each model necessarily vary and (b) there is no apparent penalisation for complexity.

ABC in Lapland²

Posted in Mountains, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , on March 16, 2023 by xi'an

On the second day of our workshop, Aki Vehtari gave a short talk about his recent works on speed up post processing by importance sampling a simulation of an imprecise version of the likelihood until the desired precision is attained, importance corrected by Pareto smoothing¹⁵. A very interesting foray into the meaning of practical models and the hard constraints on computer precision. Grégoire Clarté (formerly a PhD student of ours at Dauphine) stayed on a similar ground of using sparse GP versions of the likelihood and post processing by VB²³ then stir and repeat!

Riccardo Corradin did model-based clustering when the nonparametric mixture kernel is missing a normalizing constant, using ABC with a Wasserstein distance and an adaptive proposal, with some flavour of ABC-Gibbs (and no issue of label switching since this is clustering). Mixtures of g&k models, yay! Tommaso Rigon reconsidered clustering via a (generalised Bayes à la Bissiri et al.) discrepancy measure rather than a true model, summing over all clusters and observations a discrepancy between said observation and said cluster. Very neat if possibly costly since involving distances to clusters or within clusters. Although she considered post-processing and Bayesian bootstrap, Judith (formerly [?] Dauphine)  acknowledged that she somewhat drifted from the theme of the workshop by considering BvM theorems for functionals of unknown functions, with a form of Laplace correction. (Enjoying Lapland so much that I though “Lap” in Judith’s talk was for Lapland rather than Laplace!!!) And applications to causality.

After the (X country skiing) break, Lorenzo Pacchiardi presented his adversarial approach to ABC, differing from Ramesh et al. (2022) by the use of scoring rule minimisation, where unbiased estimators of gradients are available, Ayush Bharti argued for involving experts in selecting the summary statistics, esp. for misspecified models, and Ulpu Remes presented a Jensen-Shanon divergence for selecting models likelihood-freely²², using a test statistic as summary statistic..

Sam Duffield made a case for generalised Bayesian inference in correcting errors in quantum computers, Joshua Bon went back to scoring rules for correcting the ABC approximation, with an importance step, while Trevor Campbell, Iuri Marocco and Hector McKimm nicely concluded the workshop with lightning-fast talks in place of the cancelled poster session. Great workshop, in my most objective opinion, with new directions!

ABC in Lapland

Posted in Mountains, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , on March 15, 2023 by xi'an

Greetings from Levi, Lapland! Sonia Petrone beautifully started the ABC workshop with a (the!) plenary Sunday night talk on quasi-Bayes in the spirit of both Fortini & Petrone (2020) and the more recent Fong, Holmes, and Walker (2023). The talk got me puzzled by wondering the nature of convergence, in that it happens no matter what the underlying distribution (or lack thereof) of the data is, in that, even without any exchangeability structure, the predictive is converging. The quasi stems from a connection with the historical Smith and Markov (1978) sequential update approximation for the posterior attached with mixtures of distributions. Which itself relates to both Dirichlet posterior updates and Bayesian bootstrap à la Newton & Raftery. Appropriate link when the convergence seems to stem from the sequence of predictives instead of the underlying distribution, if any, pulling Bayes by its own bootstrap…! Chris Holmes also talked the next day about this approach, esp. about a Bayesian approach to causality that does not require counterfactuals, in connection with a recent arXival of his (on my reading list).

Carlo Alberto presented both his 2014 SABC (simulated annealing) algorithm with a neat idea of reducing waste in the tempering schedule and a recent summary selection approach based on an auto-encoder function of both y and noise to reduce to sufficient statistic. A similar idea was found in Yannik Schälte’s talk (slide above). Who was returning to Richard Wiilkinson’s exact ABC¹³ with adaptive sequential generator, also linking to simulated annealing and ABC-SMC¹² to the rescue. Notion of amortized inference. Seemingly approximating data y with NN and then learn parameter by a normalising flow.

David Frazier talked on Q-posterior²³ approach, based on Fisher’s identity, for approximating score function, which first seemed to require some exponential family structure on a completed model (but does not, after discussing with David!), Jack Jewson on beta divergence priors²³ for uncertainty on likelihoods, better than KLD divergence on e-contamination situations, any impact on ABC? Masahiro Fujisawa back to outliers impact on ABC, again with e-contaminations (with me wondering at the impact of outliers on NN estimation).

In the afternoon session (due to two last minute cancellations, we skipped (or [MCMC] skied) one afternoon session, which coincided with a bright and crispy day, how convenient! ), Massi Tamborino (U of Warwick) FitzHugh-Nagumo process, with impossibilities to solve the inference problem differently, for instance Euler-Maruyama does not always work, numerical schemes are inducing a bias. Back to ABC with the hunt for a summary that get rid of the noise, as in Carlo Alberto’s work. Yuexi Wang talked about her works on adversarial ABC inspired from GANs. Another instance where noise is used as input. True data not used in training? Imke Botha discussed an improvement to ensemble Kalman inversion which, while biased, gains over both regular SMC timewise and ensemble Kalman inversion in precision, and Chaya Weerasinghe focussed on Bayesian forecasting in state space models under model misspecification, via approximate Bayesian computation, using an auxiliary model to produce summary statistics as in indirect inference.

BayesComp Satellite [AG:DC] program

Posted in Statistics with tags , , , , , , , on February 1, 2023 by xi'an

The programme for our [AG:DC] 12-14 March satellite of BayesComp 2023 in Levi, Finland, is now on-line. (There will be a gondola shuttle running from town to hotel for all sessions.)

likelihood-free and summary-free?

Posted in Books, Mountains, pictures, Statistics, Travel with tags , , , , , , , , , , , , , on March 30, 2021 by xi'an

My friends and coauthors Chris Drovandi and David Frazier have recently arXived a paper entitled A comparison of likelihood-free methods with and without summary statistics. In which they indeed compare these two perspectives on approximate Bayesian methods like ABC and Bayesian synthetic likelihoods.

“A criticism of summary statistic based approaches is that their choice is often ad hoc and there will generally be an  inherent loss of information.”

In ABC methods, the recourse to a summary statistic is often advocated as a “necessary evil” against the greater evil of the curse of dimension, paradoxically providing a faster convergence of the ABC approximation (Fearnhead & Liu, 2018). The authors propose a somewhat generic selection of summary statistics based on [my undergrad mentors!] Gouriéroux’s and Monfort’s indirect inference, using a mixture of Gaussians as their auxiliary model. Summary-free solutions, as in our Wasserstein papers, rely on distances between distributions, hence are functional distances, that can be seen as dimension-free as well (or criticised as infinite dimensional). Chris and David consider energy distances (which sound very much like standard distances, except for averaging over all permutations), maximum mean discrepancy as in Gretton et al. (2012), Cramèr-von Mises distances, and Kullback-Leibler divergences estimated via one-nearest-neighbour formulas, for a univariate sample. I am not aware of any degree of theoretical exploration of these functional approaches towards the precise speed of convergence of the ABC approximation…

“We found that at least one of the full data approaches was competitive with or outperforms ABC with summary statistics across all examples.”

The main part of the paper, besides a survey of the existing solutions, is to compare the performances of these over a few chosen (univariate) examples, with the exact posterior as the golden standard. In the g & k model, the Pima Indian benchmark of ABC studies!, Cramèr does somewhat better. While it does much worse in an M/G/1 example (where Wasserstein does better, and similarly for a stereological extremes example of Bortot et al., 2007). An ordering inversed again for a toad movement model I had not seen before. While the usual provision applies, namely that this is a simulation study on unidimensional data and a small number of parameters, the design of the four comparison experiments is very careful, eliminating versions that are either too costly or too divergence, although this could be potentially criticised for being unrealistic (i.e., when the true posterior is unknown). The computing time is roughly the same across methods, which essentially remove the call to kernel based approximations of the likelihood. Another point of interest is that the distance methods are significantly impacted by transforms on the data, which should not be so for intrinsic distances! Demonstrating the distances are not intrinsic…