Archive for Deborah Mayo

statistical modeling with R [book review]

Posted in Books, Statistics with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , on June 10, 2023 by xi'an

Statistical Modeling with R (A dual frequentist and Bayesian approach for life scientists) is a recent book written by Pablo Inchausti, from Uruguay. In a highly personal and congenial style (witness the preface), with references to (fiction) books that enticed me to buy them. The book was sent to me by the JASA book editor for review and I went through the whole of it during my flight back from Jeddah. [Disclaimer about potential self-plagiarism: this post or a likely edited version of it will eventually appear in JASA. If not CHANCE, for once.]

The very first sentence (after the preface) quotes my late friend Steve Fienberg, which is definitely starting on the right foot. The exposition of the motivations for writing the book is quite convincing, with more emphasis than usual put on the notion and limitations of modeling. The discourse is overall inspirational and contains many relevant remarks and links that make it worth reading it as a whole. While heavily connected with a few R packages like fitdist, fitistrplus, brms (a  front for Stan), glm, glmer, the book is wisely bypassing the perilous reef of recalling R bases. Similarly for the foundations of probability and statistics. While lacking in formal definitions, in my opinion, it reads well enough to somehow compensate for this very lack. I also appreciate the coherent and throughout continuation of the parallel description of Bayesian and non-Bayesian analyses, an attempt that often too often quickly disappear in other books. (As an aside, note that hardly anyone claims to be a frequentist, except maybe Deborah Mayo.) A new model is almost invariably backed by a new dataset, if a few being somewhat inappropriate as in the mammal sleep patterns of Chapter 5. Or in Fig. 6.1.

Given that the main motivation for the book (when compared with references like BDA) is heavily towards the practical implementation of statistical modelling via R packages, it is inevitable that a large fraction of Statistical Modeling with R is spent on the analysis of R outputs, even though it sometimes feels a wee bit too heavy for yours truly.  The R screen-copies are however produced in moderate quantity and size, even though the variations in typography/fonts (at least on my copy?!) may prove confusing. Obviously the high (explosive?) distinction between regression models may eventually prove challenging for the novice reader. The specific issue of prior input (or “defining priors”) is briefly addressed in a non-chapter (p.323), although mentions are made throughout preceding chapters. I note the nice appearance of hierarchical models and experimental designs towards the end, but would have appreciated some discussions on missing topics such as time series, causality, connections with machine learning, non-parametrics, model misspecification. As an aside, I appreciated being reminded about the apocryphal nature of Ockham’s much cited quotePluralitas non est ponenda sine necessitate“.

Typo Jeffries found in Fig. 2.1, along with a rather sketchy representation of the history of both frequentist and Bayesian statistics. And Jon Wakefield’s book (with related purpose of presenting both versions of parametric inference) was mistakenly entered as Wakenfield’s in the bibliography file. Some repetitions occur. I do not like the use of the equivalence symbol ≈ for proportionality. And I found two occurrences of the unavoidable “the the” typo (p.174 and p.422). I also had trouble with some sentences like “long-run, hypothetical distribution of parameter estimates known as the sampling distribution” (p.27), “maximum likelihood estimates [being] sufficient” (p.28), “Jeffreys’ (1939) conjugate priors” [which were introduced by Raiffa and Schlaifer] (p.35), “A posteriori tests in frequentist models” (p.130), “exponential families [having] limited practical implications for non-statisticians” (p.190), “choice of priors being correct” (p.339), or calling MCMC sample terms “estimates” (p.42), and issues with some repetitions, missing indices for acronyms, packages, datasets, but did not bemoan the lack homework sections (beyond suggesting new datasets for analysis).

A problematic MCMC entry is found when calibrating the choice of the Metropolis-Hastings proposal towards avoiding negative values “that will generate an error when calculating the log-likelihood” (p.43) since it suggests proposed values should not exceed the support of the posterior (and indicates a poor coding of the log-likelihood!). I also find the motivation for the full conditional decomposition behind the Gibbs sampler (p.47) unnecessarily confusing. (And automatically having a Metropolis-Hastings step within Gibbs as on Fig. 3.9 brings another magnitude of confusion.) The Bayes factor section is very terse. The derivation of the Kullback-Leibler representation (7.3) as an expected log likelihood ratio seems to be missing a reference measure. Of course, seeing a detailed coverage of DIC (Section 7.4) did not suit me either, even though the issue with mixtures was alluded to (with no detail whatsoever). The Nelder presentation of the generalised linear models felt somewhat antiquated, since the addition of the scale factor a(φ) sounds over-parameterized.

But those are minor quibble in relation to a book that should attract curious minds of various background knowledge and expertise in statistics, as well as work nicely to support an enthusiastic teacher of statistical modelling. I thus recommend this book most enthusiastically.

perspectives on Deborah Mayo’s Statistics Wars

Posted in Statistics with tags , , , , on October 23, 2019 by xi'an

A few months ago, Andrew Gelman collated and commented the reviews of Deborah Mayo’s book by himself, Brian Haig, Christian Hennig, Art B. Owen, Robert Cousins, Stan Young, Corey Yanofsky, E.J. Wagenmakers, Ron Kenett, Daniel Lakeland, and myself. The collection did not make it through the review process of the Harvard Data Science Review! it is however available on-line for perusal…

Bertrand-Borel debate

Posted in Books, Statistics with tags , , , , , , , , , , , , , on May 6, 2019 by xi'an

On her blog, Deborah Mayo briefly mentioned the Bertrand-Borel debate on the (in)feasibility of hypothesis testing, as reported [and translated] by Erich Lehmann. A first interesting feature is that both [starting with] B mathematicians discuss the probability of causes in the Bayesian spirit of Laplace. With Bertrand considering that the prior probabilities of the different causes are impossible to set and then moving all the way to dismiss the use of probability theory in this setting, nipping the p-values in the bud..! And Borel being rather vague about the solution probability theory has to provide. As stressed by Lehmann.

“The Pleiades appear closer to each other than one would naturally expect. This statement deserves thinking about; but when one wants to translate the phenomenon into numbers, the necessary ingredients are lacking. In order to make the vague idea of closeness more precise, should we look for the smallest circle that contains the group? the largest of the angular distances? the sum of squares of all the distances? the area of the spherical polygon of which some of the stars are the vertices and which contains the others in its interior? Each of these quantities is smaller for the group of the Pleiades than seems plausible. Which of them should provide the measure of implausibility? If three of the stars form an equilateral triangle, do we have to add this circumstance, which is certainly very unlikely apriori, to those that point to a cause?” Joseph Bertrand (p.166)

 

“But whatever objection one can raise from a logical point of view cannot prevent the preceding question from arising in many situations: the theory of probability cannot refuse to examine it and to give an answer; the precision of the response will naturally be limited by the lack of precision in the question; but to refuse to answer under the pretext that the answer cannot be absolutely precise, is to place oneself on purely abstract grounds and to misunderstand the essential nature of the application of mathematics.” Emile Borel (Chapter 4)

Another highly interesting objection of Bertrand is somewhat linked with his conditioning paradox, namely that the density of the observed unlikely event depends on the choice of the statistic that is used to calibrate the unlikeliness, which makes complete sense in that the information contained in each of these statistics and the resulting probability or likelihood differ to an arbitrary extend, that there are few cases (monotone likelihood ratio) where the choice can be made, and that Bayes factors share the same drawback if they do not condition upon the entire sample. In which case there is no selection of “circonstances remarquables”. Or of uniformly most powerful tests.

severe testing : beyond Statistics wars?!

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , , on January 7, 2019 by xi'an

A timely start to my reading Deborah Mayo’s [properly printed] Statistical Inference as Severe Testing (How to get beyond the Statistics Wars) on the Armistice Day, as it seems to call for just this, an armistice! And the opportunity of a long flight to Oaxaca in addition… However, this was only the start and it took me several further weeks to peruse seriously enough the book (SIST) before writing the (light) comments below. (Receiving a free copy from CUP and then a second one directly from Deborah after I mentioned the severe sabotage!)

Indeed, I sort of expected a different content when taking the subtitle How to get beyond the Statistics Wars at face value. But on the opposite the book is actually very severely attacking anything not in the line of the Cox-Mayo severe testing line. Mostly Bayesian approach(es) to the issue! For instance, Jim Berger’s construct of his reconciliation between Fisher, Neyman, and Jeffreys is surgically deconstructed over five pages and exposed as a Bayesian ploy. Similarly, the warnings from Dennis Lindley and other Bayesians that the p-value attached with the Higgs boson experiment are not probabilities that the particle does not exist are met with ridicule. (Another go at Jim’s Objective Bayes credentials is found in the squared myth of objectivity chapter. Maybe more strongly than against staunch subjectivists like Jay Kadane. And yet another go when criticising the Berger and Sellke 1987 lower bound results. Which even extends to Vale Johnson’s UMP-type Bayesian tests.)

“Inference should provide posterior probabilities, final degrees of support, belief, probability (…) not provided by Bayes factors.” (p.443)

Another subtitle of the book could have been testing in Flatland given the limited scope of the models considered with one or at best two parameters and almost always a Normal setting. I have no idea whatsoever how the severity principle would apply in more complex models, with e.g. numerous nuisance parameters. By sticking to the simplest possible models, the book can carry on with the optimality concepts of the early days, like sufficiency (p.147) and and monotonicity and uniformly most powerful procedures, which only make sense in a tiny universe.

“The estimate is really a hypothesis about the value of the parameter.  The same data warrant the hypothesis constructed!” (p.92)

There is an entire section on the lack of difference between confidence intervals and the dual acceptance regions, although the lack of unicity in defining either of them should come as a bother. Especially outside Flatland. Actually the following section, from p.193 onward, reminds me of fiducial arguments, the more because Schweder and Hjort are cited there. (With a curve like Fig. 3.3. operating like a cdf on the parameter μ but no dominating measure!)

“The Fisher-Neyman dispute is pathological: there’s no disinterring the truth of the matter (…) Fisher grew to renounce performance goals he himself had held when it was found that fiducial solutions disagreed with them.”(p.390)

Similarly the chapter on the “myth of the “the myth of objectivity””(p.221) is mostly and predictably targeting Bayesian arguments. The dismissal of Frank Lad’s arguments for subjectivity ends up [or down] with a rather cheap that it “may actually reflect their inability to do the math” (p.228). [CoI: I once enjoyed a fantastic dinner cooked by Frank in Christchurch!] And the dismissal of loss function requirements in Ziliak and McCloskey is similarly terse, if reminding me of Aris Spanos’ own arguments against decision theory. (And the arguments about the Jeffreys-Lindley paradox as well.)

“It’s not clear how much of the current Bayesian revolution is obviously Bayesian.” (p.405)

The section (Tour IV) on model uncertainty (or against “all models are wrong”) is somewhat limited in that it is unclear what constitutes an adequate (if wrong) model. And calling for the CLT cavalry as backup (p.299) is not particularly convincing.

It is not that everything is controversial in SIST (!) and I found agreement in many (isolated) statements. Especially in the early chapters. Another interesting point made in the book is to question whether or not the likelihood principle at all makes sense within a testing setting. When two models (rather than a point null hypothesis) are X-examined, it is a rare occurrence that the likelihood factorises any further than the invariance by permutation of iid observations. Which reminded me of our earlier warning on the dangers of running ABC for model choice based on (model specific) sufficient statistics. Plus a nice sprinkling of historical anecdotes, esp. about Neyman’s life, from Poland, to Britain, to California, with some time in Paris to attend Borel’s and Lebesgue’s lectures. Which is used as a background for a play involving Bertrand, Borel, Neyman and (Egon) Pearson. Under the title “Les Miserables Citations” [pardon my French but it should be Les Misérables if Hugo is involved! Or maybe les gilets jaunes…] I also enjoyed the sections on reuniting Neyman-Pearson with Fisher, while appreciating that Deborah Mayo wants to stay away from the “minefields” of fiducial inference. With, mot interestingly, Neyman himself trying in 1956 to convince Fisher of the fallacy of the duality between frequentist and fiducial statements (p.390). Wisely quoting Nancy Reid at BFF4 stating the unclear state of affair on confidence distributions. And the final pages reawakened an impression I had at an earlier stage of the book, namely that the ABC interpretation on Bayesian inference in Rubin (1984) could come closer to Deborah Mayo’s quest for comparative inference (p.441) than she thinks, in that producing parameters producing pseudo-observations agreeing with the actual observations is an “ability to test accordance with a single model or hypothesis”.

“Although most Bayesians these days disavow classic subjective Bayesian foundations, even the most hard-nosed. “we’re not squishy” Bayesian retain the view that a prior distribution is an important if not the best way to bring in background information.” (p.413)

A special mention to Einstein’s cafe (p.156), which reminded me of this picture of Einstein’s relative Cafe I took while staying in Melbourne in 2016… (Not to be confused with the Markov bar in the same city.) And a fairly minor concern that I find myself quoted in the sections priors: a gallimaufry (!) and… Bad faith Bayesianism (!!), with the above qualification. Although I later reappear as a pragmatic Bayesian (p.428), although a priori as a counter-example!

reading pile for X break

Posted in Books, pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on December 28, 2018 by xi'an