Archive for Bayes factors

van Dantzig seminar

Posted in pictures, Statistics, Travel, University life with tags , , , , , , , , , , , , on June 3, 2023 by xi'an

prior sensitivity of the marginal likelihood

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , on June 27, 2022 by xi'an

Fernando Llorente and (Madrilene) coauthors have just arXived a paper on the safe use of prior densities for Bayesian model selection. Rather than blaming the Bayes factor, or excommunicating some improper priors, they consider in this survey solutions to design “objective” priors in model selection. (Writing this post made me realised I had forgotten to arXive a recent piece I wrote on the topic, based on short courses and blog pieces, for an incoming handbook on Bayesian advance(ment)s! Soon to be corrected.)

While intrinsically interested in the topic and hence with the study, I somewhat disagree with the perspective adopted by the authors. They for instance stick to the notion that a flat prior over the parameter space is appropriate as “the maximal expression of a non-informative prior” (despite depending on the parameterisation). Over bounded sets at least, while advocating priors “with great scale parameter” otherwise. They also refer to Jeffreys (1939) priors, by which they mean estimation priors rather than testing priors. As uncovered by Susie Bayarri and Gonzalo Garcia-Donato. Considering asymptotic consistency, they state that “in the asymptotic regime, Bayesian model selection is more sensitive to the sample size D than to the prior specifications”, which I find both imprecise and confusing,  as my feeling is that the prior specification remains overly influential as the sample size increases. (In my view, consistency is a minimalist requirement, rather than “comforting”.) The argument therein that a flat prior is informative for model choice stems from the fact that the marginal likelihood goes to zero as the support of the prior goes to infinity, which may have been an earlier argument of Jeffreys’ (1939), but does not carry much weight as the property is shared by many other priors (as remarked later). Somehow, the penalisation aspect of the marginal is not exploited more deeply in the paper. In the “objective” Bayes section, they adhere to the (convenient but weakly supported) choice of a common prior on the nuisance parameters (shared by different models). Their main argument is to develop (heretic!) “data-based priors”, from Aitkin (1991, not cited) double use of the data (or setting the likelihood to the power two), all the way to the intrinsic and fractional Bayes factors of Tony O’Hagan (1995), Jim Berger and Luis Pericchi (1996), and to the expected posterior priors of Pérez and Berger (2002) on which I worked with Juan Cano and Diego Salmeròn. (While the presentation is made against a flat prior, nothing prevents the use of another reference, improper, prior.) A short section also mentions the X-validation approach(es) of Aki Vehtari and co-authors.

the many nuances of Bayesian testing [CERminar]

Posted in Statistics with tags , , , , , , , , , , , on January 19, 2022 by xi'an

CERminar

ISBA 2021 grand finale

Posted in Kids, Mountains, pictures, Running, Statistics, Travel, University life, Wines with tags , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , on July 3, 2021 by xi'an

Last day of ISBA (and ISB@CIRM), or maybe half-day, since there are only five groups of sessions we can attend in Mediterranean time.

My first session was one on priors for mixtures, with 162⁺ attendees at 5:15am! (well, at 11:15 Wien or Marseille time), Gertrud Malsiner-Walli distinguishing between priors on number of components [in the model] vs number of clusters [in the data], with a minor question of mine whether or not a “prior” is appropriate for a data-dependent quantity. And Deborah Dunkel presenting [very early in the US!] anchor models for fighting label switching, which reminded me of the talk she gave at the mixture session of JSM 2018 in Vancouver. (With extensions to consistency and mixtures of regression.) And Clara Grazian debating on objective priors for the number of components in a mixture [in the Sydney evening], using loss functions to build these. Overall it seems there were many talks on mixtures and clustering this year.

After the lunch break, when several ISB@CIRM were about to leave, we ran the Objective Bayes contributed session, which actually included several Stein-like minimaxity talks. Plus one by Théo Moins from the patio of CIRM, with ciccadas in the background. Incredibly chaired by my friend Gonzalo, who had a question at the ready for each and every speaker! And then the Savage Awards II session. Which ceremony is postponed till Montréal next year. And which nominees are uniformly impressive!!! The winner will only be announced in September, via the ISBA Bulletin. Missing the ISBA general assembly for a dinner in Cassis. And being back for the Bayesian optimisation session.

I would have expected more talks at the boundary of BS & ML (as well as COVID and epidemic decision making), the dearth of which should be a cause for concern if researchers at this boundary do not prioritise ISBA meetings over more generic meetings like NeurIPS… (An exception was George Papamakarios’ talk on variational autoencoders in the Savage Awards II session.)

Many many thanks to the group of students at UConn involved in setting most of the Whova site and running the support throughout the conference. It indeed went on very smoothly and provided a worthwhile substitute for the 100% on-site version. Actually, I both hope for the COVID pandemic (or at least the restrictions attached to it) to abate and for the hybrid structure of meetings to stay, along with the multiplication of mirror workshops. Being together is essential to the DNA of conferences, but travelling to a single location is not so desirable, for many reasons. Looking for ISBA 2022, a year from now, either in Montréal, Québec, or in one of the mirror sites!

ISBA 2021 low key

Posted in Kids, Mountains, pictures, Running, Statistics, Travel, University life, Wines with tags , , , , , , , , , , , , , , , , , , , , , , , , on July 2, 2021 by xi'an

Fourth day of ISBA (and ISB@CIRM), which was a bit low key for me as I had a longer hike with my wife in the morning, including a swim in a sea as cold as the Annecy lake last month!, but nonetheless enjoyable and crystal clear, then attacked my pile of Biometrika submissions that had accumulated beyond the reasonable since last week, chased late participants who hadn’t paid yet, reviewed a paper that was due two weeks ago, chatted with participants before they left, discussed a research problem, and as a result ended attending only four sessions over the whole day. Including one about Models and Methods for Networks and Graphs, with interesting computation challenges, esp. in block models, the session in memoriam of Hélène Massam, where Gérard Letac (part of ISB@CIRM!), Jacek Wesolowski, and Reza Mohammadi, all coauthors of Hélène, made presentations on their joint advances. Hélène was born in Marseille, actually, in 1949, and even though she did not stay in France after her École Normale studies, it was a further commemoration to attend this session in her birth-place. I also found out about them working on the approximation of a ratio of normalising constants for the G-Wishart. The last session of my data was the Susie Bayarri memorial lecture, with Tamara Roderick as the lecturer. Reporting on an impressive bunch of tricks to reduce computing costs for hierarchical models with Gaussian processes.

%d bloggers like this: