Archive for Harold Jeffreys

JASP, a really really fresh way to do stats

Posted in Statistics with tags , , , , , , on February 1, 2018 by xi'an

Bayesian workers, unite!

Posted in Books, Kids, pictures, Statistics, University life with tags , , , , , , , on January 19, 2018 by xi'an

This afternoon, Alexander Ly is defending his PhD thesis at the University of Amsterdam. While I cannot attend the event, I want to celebrate the event and a remarkable thesis around the Bayes factor [even though we disagree on its role!] and the Jeffreys’s Amazing Statistics Program (!), otherwise known as JASP. Plus commend the coolest thesis cover I ever saw, made by the JASP graphical designer Viktor Beekman and representing Harold Jeffreys leading empirical science workers in the best tradition of socialist realism! Alexander wrote a post on the JASP blog to describe the thesis, the cover, and his plans for the future. Congratulations!

estimation versus testing [again!]

Posted in Books, Statistics, University life with tags , , , , , , , , , , on March 30, 2017 by xi'an

The following text is a review I wrote of the paper “Parameter estimation and Bayes factors”, written by J. Rouder, J. Haff, and J. Vandekerckhove. (As the journal to which it is submitted gave me the option to sign my review.)

The opposition between estimation and testing as a matter of prior modelling rather than inferential goals is quite unusual in the Bayesian literature. In particular, if one follows Bayesian decision theory as in Berger (1985) there is no such opposition, but rather the use of different loss functions for different inference purposes, while the Bayesian model remains single and unitarian.

Following Jeffreys (1939), it sounds more congenial to the Bayesian spirit to return the posterior probability of an hypothesis H⁰ as an answer to the question whether this hypothesis holds or does not hold. This however proves impossible when the “null” hypothesis H⁰ has prior mass equal to zero (or is not measurable under the prior). In such a case the mathematical answer is a probability of zero, which may not satisfy the experimenter who asked the question. More fundamentally, the said prior proves inadequate to answer the question and hence to incorporate the information contained in this very question. This is how Jeffreys (1939) justifies the move from the original (and deficient) prior to one that puts some weight on the null (hypothesis) space. It is often argued that the move is unnatural and that the null space does not make sense, but this only applies when believing very strongly in the model itself. When considering the issue from a modelling perspective, accepting the null H⁰ means using a new model to represent the model and hence testing becomes a model choice problem, namely whether or not one should use a complex or simplified model to represent the generation of the data. This is somehow the “unification” advanced in the current paper, albeit it does appear originally in Jeffreys (1939) [and then numerous others] rather than the relatively recent Mitchell & Beauchamp (1988). Who may have launched the spike & slab denomination.

I have trouble with the analogy drawn in the paper between the spike & slab estimate and the Stein effect. While the posterior mean derived from the spike & slab posterior is indeed a quantity drawn towards zero by the Dirac mass at zero, it is rarely the point in using a spike & slab prior, since this point estimate does not lead to a conclusion about the hypothesis: for one thing it is never exactly zero (if zero corresponds to the null). For another thing, the construction of the spike & slab prior is both artificial and dependent on the weights given to the spike and to the slab, respectively, to borrow expressions from the paper. This approach thus leads to model averaging rather than hypothesis testing or model choice and therefore fails to answer the (possibly absurd) question as to which model to choose. Or refuse to choose. But there are cases when a decision must be made, like continuing a clinical trial or putting a new product on the market. Or not.

In conclusion, the paper surprisingly bypasses the decision-making aspect of testing and hence ends up with a inconclusive setting, staying midstream between Bayes factors and credible intervals. And failing to provide a tool for decision making. The paper also fails to acknowledge the strong dependence of the Bayes factor on the tail behaviour of the prior(s), which cannot be [completely] corrected by a finite sample, hence its relativity and the unreasonableness of a fixed scale like Jeffreys’ (1939).

X-Outline of a Theory of Statistical Estimation

Posted in Books, Statistics, University life with tags , , , , , , , , , , on March 23, 2017 by xi'an

While visiting Warwick last week, Jean-Michel Marin pointed out and forwarded me this remarkable paper of Jerzy Neyman, published in 1937, and presented to the Royal Society by Harold Jeffreys.

“Leaving apart on one side the practical difficulty of achieving randomness and the meaning of this word when applied to actual experiments…”

“It may be useful to point out that although we are frequently witnessing controversies in which authors try to defend one or another system of the theory of probability as the only legitimate, I am of the opinion that several such theories may be and actually are legitimate, in spite of their occasionally contradicting one another. Each of these theories is based on some system of postulates, and so long as the postulates forming one particular system do not contradict each other and are sufficient to construct a theory, this is as legitimate as any other. “

This paper is fairly long in part because Neyman starts by setting Kolmogorov’s axioms of probability. This is of historical interest but also needed for Neyman to oppose his notion of probability to Jeffreys’ (which is the same from a formal perspective, I believe!). He actually spends a fair chunk on explaining why constants cannot have anything but trivial probability measures. Getting ready to state that an a priori distribution has no meaning (p.343) and that in the rare cases it does it is mostly unknown. While reading the paper, I thought that the distinction was more in terms of frequentist or conditional properties of the estimators, Neyman’s arguments paving the way to his definition of a confidence interval. Assuming repeatability of the experiment under the same conditions and therefore same parameter value (p.344).

“The advantage of the unbiassed [sic] estimates and the justification of their use lies in the fact that in cases frequently met the probability of their differing very much from the estimated parameters is small.”

“…the maximum likelihood estimates appear to be what could be called the best “almost unbiassed [sic]” estimates.”

It is also quite interesting to read that the principle for insisting on unbiasedness is one of producing small errors, because this is not that often the case, as shown by the complete class theorems of Wald (ten years later). And that maximum likelihood is somewhat relegated to a secondary rank, almost unbiased being understood as consistent. A most amusing part of the paper is when Neyman inverts the credible set into a confidence set, that is, turning what is random in a constant and vice-versa. With a justification that the credible interval has zero or one coverage, while the confidence interval has a long-run validity of returning the correct rate of success. What is equally amusing is that the boundaries of a credible interval turn into functions of the sample, hence could be evaluated on a frequentist basis, as done later by Dennis Lindley and others like Welch and Peers, but that Neyman fails to see this and turn the bounds into hard values. For a given sample.

“This, however, is not always the case, and in general there are two or more systems of confidence intervals possible corresponding to the same confidence coefficient α, such that for certain sample points, E’, the intervals in one system are shorter than those in the other, while for some other sample points, E”, the reverse is true.”

The resulting construction of a confidence interval is then awfully convoluted when compared with the derivation of an HPD region, going through regions of acceptance that are the dual of a confidence interval (in the sampling space), while apparently [from my hasty read] missing a rule to order them. And rejecting the notion of a confidence interval being possibly empty, which, while being of practical interest, clashes with its frequentist backup.

a response by Ly, Verhagen, and Wagenmakers

Posted in Statistics with tags , , , , , , , , on March 9, 2017 by xi'an

Following my demise [of the Bayes factor], Alexander Ly, Josine Verhagen, and Eric-Jan Wagenmakers wrote a very detailed response. Which I just saw the other day while in Banff. (If not in Schiphol, which would have been more appropriate!)

“In this rejoinder we argue that Robert’s (2016) alternative view on testing has more in common with Jeffreys’s Bayes factor than he suggests, as they share the same ‘‘shortcomings’’.”

Rather unsurprisingly (!), the authors agree with my position on the dangers to ignore decisional aspects when using the Bayes factor. A point of dissension is the resolution of the Jeffreys[-Lindley-Bartlett] paradox. One consequence derived by Alexander and co-authors is that priors should change between testing and estimating. Because the parameters have a different meaning under the null and under the alternative, a point I agree with in that these parameters are indexed by the model [index!]. But with which I disagree when arguing that the same parameter (e.g., a mean under model M¹) should have two priors when moving from testing to estimation. To state that the priors within the marginal likelihoods “are not designed to yield posteriors that are good for estimation” (p.45) amounts to wishful thinking. I also do not find a strong justification within the paper or the response about choosing an improper prior on the nuisance parameter, e.g. σ, with the same constant. Another a posteriori validation in my opinion. However, I agree with the conclusion that the Jeffreys paradox prohibits the use of an improper prior on the parameter being tested (or of the test itself). A second point made by the authors is that Jeffreys’ Bayes factor is information consistent, which is correct but does not solved my quandary with the lack of precise calibration of the object, namely that alternatives abound in a non-informative situation.

“…the work by Kamary et al. (2014) impressively introduces an alternative view on testing, an algorithmic resolution, and a theoretical justification.”

The second part of the comments is highly supportive of our mixture approach and I obviously appreciate very much this support! Especially if we ever manage to turn the paper into a discussion paper! The authors also draw a connection with Harold Jeffreys’ distinction between testing and estimation, based upon Laplace’s succession rule. Unbearably slow succession law. Which is well-taken if somewhat specious since this is a testing framework where a single observation can send the Bayes factor to zero or +∞. (I further enjoyed the connection of the Poisson-versus-Negative Binomial test with Jeffreys’ call for common parameters. And the supportive comments on our recent mixture reparameterisation paper with Kaniav Kamari and Kate Lee.) The other point that the Bayes factor is more sensitive to the choice of the prior (beware the tails!) can be viewed as a plus for mixture estimation, as acknowledged there. (The final paragraph about the faster convergence of the weight α is not strongly

le bayésianisme aujourd’hui [book review]

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , , , on March 4, 2017 by xi'an

It is quite rare to see a book published in French about Bayesian statistics and even rarer to find one that connects philosophy of science, foundations of probability, statistics, and applications in neurosciences and artificial intelligence. Le bayésianisme aujourd’hui (Bayesianism today) was edited by Isabelle Drouet, a Reader in Philosophy at La Sorbonne. And includes a chapter of mine on the basics of Bayesian inference (à la Bayesian Choice), written in French like the rest of the book.

The title of the book is rather surprising (to me) as I had never heard the term Bayesianism mentioned before. As shown by this link, the term apparently exists. (Even though I dislike the sound of it!) The notion is one of a probabilistic structure of knowledge and learning, à la Poincaré. As described in the beginning of the book. But I fear the arguments minimising the subjectivity of the Bayesian approach should not be advanced, following my new stance on the relativity of probabilistic statements, if only because they are defensive and open the path all too easily to counterarguments. Similarly, the argument according to which the “Big Data” era makesp the impact of the prior negligible and paradoxically justifies the use of Bayesian methods is limited to the case of little Big Data, i.e., when the observations are more or less iid with a limited number of parameters. Not when the number of parameters explodes. Another set of arguments that I find both more modern and compelling [for being modern is not necessarily a plus!] is the ease with which the Bayesian framework allows for integrative and cooperative learning. Along with its ultimate modularity, since each component of the learning mechanism can be extracted and replaced with an alternative. Continue reading

sleeping beauty

Posted in Books, Kids, Statistics with tags , , , , , , , , , on December 24, 2016 by xi'an

Through X validated, W. Huber made me aware of this probability paradox [or para-paradox] of which I had never heard before. One of many guises of this paradox goes as follows:

Shahrazad is put to sleep on Sunday night. Depending on the hidden toss of a fair coin, she is awaken either once (Heads) or twice (Tails). After each awakening, she gets back to sleep and forget that awakening. When awakened, what should her probability of Heads be?

My first reaction is to argue that Shahrazad does not gain information between the time she goes to sleep when the coin is fair and the time(s) she is awaken, apart from being awaken, since she does not know how many times she has been awaken, so the probability of Heads remains ½. However, when thinking more about it on my bike ride to work, I thought of the problem as a decision theory or betting problem, which makes ⅓ the optimal answer.

I then read [if not the huge literature] a rather extensive analysis of the paradox by Ciweski, Kadane, Schervish, Seidenfeld, and Stern (CKS³), which concludes at roughly the same thing, namely that, when Monday is completely exchangeable with Tuesday, meaning that no event can bring any indication to Shahrazad of which day it is, the posterior probability of Heads does not change (Corollary 1) but that a fair betting strategy is p=1/3, with the somewhat confusing remark by CKS³ that this may differ from her credence. But then what is the point of the experiment? Or what is the meaning of credence? If Shahrazad is asked for an answer, there must be a utility or a penalty involved otherwise she could as well reply with a probability of p=-3.14 or p=10.56… This makes for another ill-defined aspect of the “paradox”.

Another remark about this ill-posed nature of the experiment is that, when imagining running an ABC experiment, I could only come with one where the fair coin is thrown (Heads or Tails) and a day (Monday or Tuesday) is chosen at random. Then every proposal (Heads or Tails) is accepted as an awakening, hence the posterior on Heads is the uniform prior. The same would not occurs if we consider the pair of awakenings under Tails as two occurrences of (p,E), but this does not sound (as) correct since Shahrazad only knows of one E: to paraphrase Jeffreys, this is an unobservable result that may have not occurred. (Or in other words, Bayesian learning is not possible on Groundhog Day!)