Archive for Harold Jeffreys

“an outstanding paper that covers the Jeffreys-Lindley paradox”…

Posted in Statistics, University life with tags , , , , , , , , on December 4, 2013 by xi'an

“This is, in this revised version, an outstanding paper that covers the Jeffreys-Lindley paradox (JLP) in exceptional depth and that unravels the philosophical differences between different schools of inference with the help of the JLP. From the analysis of this paradox, the author convincingly elaborates the principles of Bayesian and severity-based inferences, and engages in a thorough review of the latter’s account of the JLP in Spanos (2013).” Anonymous

I have now received a second round of reviews of my paper, “On the Jeffreys-Lindleys paradox” (submitted to Philosophy of Science) and the reports are quite positive (or even extremely positive as in the above quote!). The requests for changes are directed to clarify points, improve the background coverage, and simplify my heavy style (e.g., cutting Proustian sentences). These requests were easily addressed (hopefully to the satisfaction of the reviewers) and, thanks to the week in Warwick, I have already sent the paper back to the journal, with high hopes for acceptance. The new version has also been arXived. I must add that some parts of the reviews sounded much better than my original prose and I was almost tempted to include them in the final version. Take for instance

“As a result, the reader obtains not only a better insight into what is at stake in the JLP, going beyond the results of Spanos (2013) and Sprenger (2013), but also a much better understanding of the epistemic function and mechanics of statistical tests. This is a major achievement given the philosophical controversies that have haunted the topic for decades. Recent insights from Bayesian statistics are integrated into the article and make sure that it is mathematically up to date, but the technical and foundational aspects of the paper are well-balanced.” Anonymous

Bayes 250th versus Bayes 2.5.0.

Posted in Books, Statistics, Travel, University life with tags , , , , , , , , , , , , , , , , , on July 20, 2013 by xi'an

More than a year ago Michael Sørensen (2013 EMS Chair) and Fabrizzio Ruggeri (then ISBA President) kindly offered me to deliver the memorial lecture on Thomas Bayes at the 2013 European Meeting of Statisticians, which takes place in Budapest today and the following week. I gladly accepted, although with some worries at having to cover a much wider range of the field rather than my own research topic. And then set to work on the slides in the past week, borrowing from my most “historical” lectures on Jeffreys and Keynes, my reply to Spanos, as well as getting a little help from my nonparametric friends (yes, I do have nonparametric friends!). Here is the result, providing a partial (meaning both incomplete and biased) vision of the field.

Since my talk is on Thursday, and because the talk is sponsored by ISBA, hence representing its members, please feel free to comment and suggest changes or additions as I can still incorporate them into the slides… (Warning, I purposefully kept some slides out to preserve the most surprising entry for the talk on Thursday!)

integral priors for binomial regression

Posted in pictures, R, Statistics, University life with tags , , , , , , , , on July 2, 2013 by xi'an

Diego Salmerón and Juan Antonio Cano from Murcia, Spain (check the movie linked to the above photograph!), kindly included me in their recent integral prior paper, even though I mainly provided (constructive) criticism. The paper has just been arXived.

A few years ago (2008 to be precise), we wrote together an integral prior paper, published in TEST, where we exploited the implicit equation defining those priors (Pérez and Berger, 2002), to construct a Markov chain providing simulations from both integral priors. This time, we consider the case of a binomial regression model and the problem of variable selection. The integral equations are similarly defined and a Markov chain can again be used to simulate from the integral priors. However, the difficulty therein follows from the regression structure, which makes selecting training datasets more elaborate, and  whose posterior is not standard. Most fortunately, because the training dataset is exactly the right dimension, a re-parameterisation allows for a simulation of Bernoulli probabilities, provided a Jeffreys prior is used on those.  (This obviously makes the “prior” dependent on the selected training dataset, but it should not overly impact the resulting inference.)

17 equations that changed the World (#2)

Posted in Books, Statistics with tags , , , , , , , , , , , , , , , , , on October 16, 2012 by xi'an

(continuation of the book review)

If you placed your finger at that point, the two halves of the string would still be able to vibrate in the sin 2x pattern, but not in the sin x one. This explains the Pythagorean discovery that a string half as long produced a note one octave higher.” (p.143)

The following chapters are all about Physics: the wave equation, Fourier’s transform and the heat equation, Navier-Stokes’ equation(s), Maxwell’s equation(s)—as in  The universe in zero word—, the second law of thermodynamics, E=mc² (of course!), and Schrödinger’s equation. I won’t go so much into details for those chapters, even though they are remarkably written. For instance, the chapter on waves made me understand the notion of harmonics in a much more intuitive and lasting way than previous readings. (This chapter 8 also mentions the “English mathematician Harold Jeffreys“, while Jeffreys was primarily a geophysicist. And a Bayesian statistician with major impact on the field, his Theory of Probability arguably being the first modern Bayesian book. Interestingly, Jeffreys also was the first one to find approximations to the Schrödinger’s equation, however he is not mentioned in this later chapter.) Chapter 9 mentions the heat equation but is truly about Fourier’s transform which he uses as a tool and later became a universal technique. It also covers Lebesgue’s integration theory, wavelets, and JPEG compression. Chapter 10 on Navier-Stokes’ equation also mentions climate sciences, where it takes a (reasonable) stand. Chapter 11 on Maxwell’s equations is a short introduction to electromagnetism, with radio the obvious illustration. (Maybe not the best chapter in the book.) Continue reading

not only defended but also applied [to appear]

Posted in Books, Statistics, University life with tags , , , , , , , on June 12, 2012 by xi'an

Our paper with Andrew Gelman, “Not only defended but also applied”: the perceived absurdity of Bayesian inference, has been reviewed for the second time and is to appear in The American Statistician, as a discussion paper. Terrific news! This is my first discussion paper in The American Statistician (and the second in total, the first one being the re-read of JeffreysTheory of Probability.) [The updated version is now on arXiv.]

PLoS topic page on ABC

Posted in Books, pictures, R, Statistics, University life with tags , , , , , , , , , on June 7, 2012 by xi'an

A few more comments on the specific entry on ABC written by Mikael Sunnåker et al…. The entry starts with the representation of the posterior probability of an hypothesis, rather than with the posterior density of a model parameter, which seems to lead the novice reader astray. After all, (a) ABC was not introduced for conducting model choice and (b) interchanging hypothesis and model means that the probability of an hypothesis H as used in the entry is actually the evidence in favour of the corresponding model. (There are a few typos and grammar mistakes, but I assume either PLoS or later contributors will correct those.) When the authors state that the “outcome of the ABC rejection algorithm is a set of parameter estimates distributed according to the desired posterior distribution”, I think they are misleading the readers as they forget the “approximative” aspect of this distribution. Further below, I would have used the title “Insufficient summary statistics” rather than “Sufficient summary statistics”, as it spells out more clearly the fundamental issue with the potential difficulty in using ABC. (And I am not sure the subsequent paragraph on “Choice and sufficiency of summary statistics” should bother with the sufficiency aspects… It seems to me much more relevant to assess the impact on predictive performances.)

Although this is most minor, I would not have made mention of the (rather artificial) “table for interpretation of the strength in values of the Bayes factor (…) originally published by Harold Jeffreys[6] “. I obviously appreciate very much that the authors advertise our warning about the potential lack of validity of an ABC based Bayes factor! I also like the notion of “quality control”, even though it should only appear once. And the pseudo-example is quite fine as an introduction, while it could be supplemented with the outcome resulting from a large n, to be compared with the true posterior distribution. The section “Pitfalls and remedies” is remarkable in that it details the necessary steps for validating a ABC implementation: the only entry I would remove is the one about “Prior distribution and parameter ranges”, in that this is not a problem inherent to ABC… (Granted, the authors present this as a “general risks in statistical inference exacerbated in ABC”, which makes more sense!) It may be that the section on the non-zero tolerance should emphasize more clearly the fact that ε should not be zero. As discussed in the recent Read Paper by Fearnhead and Prangle when envisioning ABC as a non-parametric method of inference.

At last, it is always possible to criticise the coverage of the historical part, since ABC is such a recent field that it is constantly evolving. But the authors correctly point out to (Don) Rubin on the one hand and to Diggle and Graton on the other. Now, I would suggest adding in this section links to the relevant softwares like our own DIY-ABC

(Those comments have also been posted on the PLoS Computational Biology wiki.)

May I believe I am a Bayesian?!

Posted in Books, Statistics, University life with tags , , , , , , , , , on January 21, 2012 by xi'an

…the argument is false that because some ideal form of this approach to reasoning seems excellent n theory it therefore follows that in practice using this and only this approach to reasoning is the right thing to do.” Stephen Senn, 2011

Deborah Mayo, Aris Spanos, and Kent Staley have edited a special issue of Rationality, Markets and Morals (RMM) (a rather weird combination, esp. for a journal name!) on “Statistical Science and Philosophy of Science: Where Do (Should) They Meet in 2011 and Beyond?” for which comments are open. Stephen Senn has a paper therein entitled You May Believe You Are a Bayesian But You Are Probably Wrong in his usual witty, entertaining, and… Bayesian-bashing style! I find it very kind of him to allow us to remain in the wrong, very kind indeed…

   

Now, the paper somehow intersects with the comments Stephen made on our review of Harold Jeffreys’ Theory of Probability a while ago. It contains a nice introduction to the four great systems of statistical inference, embodied by de Finetti, Fisher, Jeffreys, and Neyman plus Pearson. The main criticism of Bayesianism à la de Finetti is that it is so perfect as to be outworldish. And, since this perfection is lost in the practical implementation, there is no compelling reason to be a Bayesian. Worse, that all practical Bayesian implementations conflict with Bayesian principles. Hence a Bayesian author “in practice is wrong”. Stephen concludes with a call for eclecticism, quite in line with his usual style since this is likely to antagonise everyone. (I wonder whether or not having no final dot to the paper has a philosophical meaning. Since I have been caught in over-interpreting book covers, I will not say more!) As I will try to explain below, I believe Stephen has paradoxically himself fallen victim of over-theorising/philosophising! (Referring the interested reader to the above post as well as to my comments on Don Fraser’s “Is Bayes posterior quick and dirty confidence?” for more related points. Esp. about Senn’s criticisms of objective Bayes on page 52 that are not so central to this discussion… Same thing for the different notions of probability [p.49] and the relative difficulties of the terms in (2) [p.50]. Deborah Mayo has a ‘deconstructed” version of Stephen’s paper on her blog, with a much deeper if deBayesian philosophical discussion. And then Andrew Jaffe wrote a post in reply to Stephen’s paper. Whose points I cannot discuss for lack of time, but with an interesting mention of Jaynes as missing in Senn’s pantheon.)

  

The Bayesian theory is a theory on how to remain perfect but it does not explain how to become good.” Stephen Senn, 2011

While associating theories with characters is a reasonable rethoretical device, especially with large scale characters as the one above!, I think it deters the reader from a philosophical questioning on the theory behind the (big) man. (In fact, it is a form of bullying or, more politely (?), of having big names shoved down your throat as a form of argument.)  In particular, Stephen freezes the (Bayesian reasoning about the) Bayesian paradigm in its de Finetti phase-state, arguing about what de Finetti thought and believed. While this is historically interesting, I do not see why we should care at the praxis level. (I have made similar comments on this blog about the unpleasant aspects of being associated with one character, esp. the mysterious Reverent Bayes!) But this is not my main point.

…in practice things are not so simple.” Stephen Senn, 2011

The core argument in Senn’s diatribe is that reality is always more complex than the theory allows for and thus that a Bayesian has to compromise on her/his perfect theory with reality/practice in order to reach decisions. A kind of philosophical equivalent to Achille and the tortoise. However, it seems to me that the very fact that the Bayesian paradigm is a learning principle implies that imprecisions and imperfections are naturally endowed into the decision process. Thus avoiding the apparent infinite regress (Regress ins Unendliche) of having to run a Bayesian analysis to derive the prior for the Bayesian analysis at the level below (which is how I interpret Stephen’s first paragraph in Section 3). By refusing the transformation of a perfect albeit ideal Bayesian into a practical if imperfect bayesian (or coherent learner or whatever name that does not sound like being a member of a sect!), Stephen falls short of incorporating the contrainte de réalité into his own paradigm. The further criticisms found about prior justification, construction, evaluation (pp.59-60) are also of that kind, namely preventing the statistician to incorporate a degree of (probabilistic) uncertainty into her/his analysis.

In conclusion, reading Stephen’s piece was a pleasant and thought-provoking moment. I am glad to be allowed to believe I am a Bayesian, even though I do not believe it is a belief! The praxis of thousands of scientists using Bayesian tools with their personal degree of subjective involvement is an evolutive organism that reaches much further than the highly stylised construct of de Finetti (or of de Finetti restaged by Stephen!). And appropriately getting away from claims to being perfect or right. Or even being more philosophical.

Follow

Get every new post delivered to your Inbox.

Join 641 other followers