Archive for E.T. Jaynes

Bertrand’s paradox [re]solved?

Posted in Books, pictures, Statistics, Travel with tags , , , , , , , , , , , on September 29, 2023 by xi'an

On the plane back from Vancouver, I read Bertrand’s Paradox Resolution and Its Implications for the Bing–Fisher Problem by Richard A. Chechile [who had pointed out his paper to me] In this paper, Chechile considers the Bayesian connections/sequences of Betrand’s paradox, as he sees it Bertrand’s different solutions/paradox to be

“designed to illustrate his dissatisfaction with the Bayes and Laplace use of a probability distribution to represent an unknown parameter that can have any continuous value”

and proposes to “resolve” this paradox, which imho is neither a paradox nor in need of a resolution!, as I see it more like a reflection on the importance of sigma algebras and measure theory. The uniform distribution (behind the “random” chord) is not a uniquely specified concept, just like the maximum entropy distribution is relative to the dominating measure. When arguing that

“Such a definition [based on any possible distribution of a stochastic chord] would yield a random variable, but this weak sense of the word random is not satisfactory, because there is an infinite number of stochastic processes that can be defined to yield a probability distribution of chord lengths.”

the author is simply restating that infinite collection of dominating measures.  But imho he is somewhat missing this point when defining Shannon`s entropy by resorting to a discrete version. And when adopting a uniform measure on the chord as a reference (Section 3.2, on The Importance of a Dominant Metric Representation). While the probability P(L>1) is invariant under any increasing transform of L (and 1)… This amounts to arguing for a favourite parameterisation in constructing  a reference prior (Section 4, where Jeffreys prior is also dismissed for not being at maximum entropy). The ensuing discussion as to why the three solutions of Bertrand’s are not valid (Section 2.2) is thus most curious to me since they all are implementable/practical ways of producing stochastic chords. I find it rather amusing that one returns to the quest for the ideal priori distribution Bayesians were so fiercely debating at the turn of the previous century. And non-Bayesians were all too happy to exploit when arguing against this approach.

[de]quarantined by slideshare

Posted in Books, pictures, Statistics, University life with tags , , , , , , , , , , , , , , , , on January 11, 2021 by xi'an

A follow-up episode to the SlideShare m’a tuer [sic] saga: After the 20 November closure of my xianblog account and my request for an explanation, I was told by Linkedin that a complaint has been made about one of my talks for violation of copyright. Most surprisingly, at least at first, it was about the slides for the graduate lectures I gave ten years ago at CREST on (re)reading Jaynes’ Probability Theory. While the slides contain a lot of short quotes from the Logic of Science, somewhat necessarily since I discuss the said book, there are also many quotes from Jeffreys’ Theory of Probability and “t’is but a scratch” on the contents of this lengthy book… Plus, the pdf file appears to be accessible on several sites, including one with an INRIA domain. Since I had to fill a “Counter-Notice of Copyright Infringement” to unlock the rest of the depository, I just hope no legal action is going to be taken about this lecture. But I remain puzzled at the reasoning behind the complaint, unwilling to blame radical Jaynesians for it! As an aside, here are the registered 736 views of the slides for the past year:

Mea Culpa

Posted in Statistics with tags , , , , , , , , , , , on April 10, 2020 by xi'an

[A quote from Jaynes about improper priors that I had missed in his book, Probability Theory.]

For many years, the present writer was caught in this error just as badly as anybody else, because Bayesian calculations with improper priors continued to give just the reasonable and clearly correct results that common sense demanded. So warnings about improper priors went unheeded; just that psychological phenomenon. Finally, it was the marginalization paradox that forced recognition that we had only been lucky in our choice of problems. If we wish to consider an improper prior, the only correct way of doing it is to approach it as a well-defined limit of a sequence of proper priors. If the correct limiting procedure should yield an improper posterior pdf for some parameter α, then probability theory is telling us that the prior information and data are too meager to permit any inferences about α. Then the only remedy is to seek more data or more prior information; probability theory does not guarantee in advance that it will lead us to a useful answer to every conceivable question.Generally, the posterior pdf is better behaved than the prior because of the extra information in the likelihood function, and the correct limiting procedure yields a useful posterior pdf that is analytically simpler than any from a proper prior. The most universally useful results of Bayesian analysis obtained in the past are of this type, because they tended to be rather simple problems, in which the data were indeed so much more informative than the prior information that an improper prior gave a reasonable approximation – good enough for all practical purposes – to the strictly correct results (the two results agreed typically to six or more significant figures).

In the future, however, we cannot expect this to continue because the field is turning to more complex problems in which the prior information is essential and the solution is found by computer. In these cases it would be quite wrong to think of passing to an improper prior. That would lead usually to computer crashes; and, even if a crash is avoided, the conclusions would still be, almost always, quantitatively wrong. But, since likelihood functions are bounded, the analytical solution with proper priors is always guaranteed to converge properly to finite results; therefore it is always possible to write a computer program in such a way (avoid underflow, etc.) that it cannot crash when given proper priors. So, even if the criticisms of improper priors on grounds of marginalization were unjustified,it remains true that in the future we shall be concerned necessarily with proper priors.

contemporary issues in hypothesis testing

Posted in Statistics with tags , , , , , , , , , , , , , , , , , , on September 26, 2016 by xi'an

hipocontemptThis week [at Warwick], among other things, I attended the CRiSM workshop on hypothesis testing, giving the same talk as at ISBA last June. There was a most interesting and unusual talk by Nick Chater (from Warwick) about the psychological aspects of hypothesis testing, namely about the unnatural features of an hypothesis in everyday life, i.e., how far this formalism stands from human psychological functioning.  Or what we know about it. And then my Warwick colleague Tom Nichols explained how his recent work on permutation tests for fMRIs, published in PNAS, testing hypotheses on what should be null if real data and getting a high rate of false positives, got the medical imaging community all up in arms due to over-simplified reports in the media questioning the validity of 15 years of research on fMRI and the related 40,000 papers! For instance, some of the headings questioned the entire research in the area. Or transformed a software bug missing the boundary effects into a major flaw.  (See this podcast on Not So Standard Deviations for a thoughtful discussion on the issue.) One conclusion of this story is to be wary of assertions when submitting a hot story to journals with a substantial non-scientific readership! The afternoon talks were equally exciting, with Andrew explaining to us live from New York why he hates hypothesis testing and prefers model building. With the birthday model as an example. And David Draper gave an encompassing talk about the distinctions between inference and decision, proposing a Jaynes information criterion and illustrating it on Mendel‘s historical [and massaged!] pea dataset. The next morning, Jim Berger gave an overview on the frequentist properties of the Bayes factor, with in particular a novel [to me] upper bound on the Bayes factor associated with a p-value (Sellke, Bayarri and Berger, 2001)

B¹⁰(p) ≤ 1/-e p log p

with the specificity that B¹⁰(p) is not testing the original hypothesis [problem] but a substitute where the null is the hypothesis that p is uniformly distributed, versus a non-parametric alternative that p is more concentrated near zero. This reminded me of our PNAS paper on the impact of summary statistics upon Bayes factors. And of some forgotten reference studying Bayesian inference based solely on the p-value… It is too bad I had to rush back to Paris, as this made me miss the last talks of this fantastic workshop centred on maybe the most important aspect of statistics!

Statistical rethinking [book review]

Posted in Books, Kids, R, Statistics, University life with tags , , , , , , , , , , , , , , , , , , , , , on April 6, 2016 by xi'an

Statistical Rethinking: A Bayesian Course with Examples in R and Stan is a new book by Richard McElreath that CRC Press sent me for review in CHANCE. While the book was already discussed on Andrew’s blog three months ago, and [rightly so!] enthusiastically recommended by Rasmus Bååth on Amazon, here are the reasons why I am quite impressed by Statistical Rethinking!

“Make no mistake: you will wreck Prague eventually.” (p.10)

While the book has a lot in common with Bayesian Data Analysis, from being in the same CRC series to adopting a pragmatic and weakly informative approach to Bayesian analysis, to supporting the use of STAN, it also nicely develops its own ecosystem and idiosyncrasies, with a noticeable Jaynesian bent. To start with, I like the highly personal style with clear attempts to make the concepts memorable for students by resorting to external concepts. The best example is the call to the myth of the golem in the first chapter, which McElreath uses as an warning for the use of statistical models (which almost are anagrams to golems!). Golems and models [and robots, another concept invented in Prague!] are man-made devices that strive to accomplish the goal set to them without heeding the consequences of their actions. This first chapter of Statistical Rethinking is setting the ground for the rest of the book and gets quite philosophical (albeit in a readable way!) as a result. In particular, there is a most coherent call against hypothesis testing, which by itself justifies the title of the book. Continue reading