Archive for MCQMC

continuous herded Gibbs sampling

Posted in Books, pictures, Statistics with tags , , , , , , , , on June 28, 2021 by xi'an

Read a short paper by Laura Wolf and Marcus Baum on Gibbs herding, where herding is a technique of “deterministic sampling”, for instance selecting points over the support of the distribution by matching exact and empirical (or “empirical”!) moments. Which reminds me of the principal points devised by my late friend Bernhard Flury. With an unclear argument as to why it could take over random sampling:

“random numbers are often generated by pseudo-random number generators, hence are not truly random”

Especially since the aim is to “draw samples from continuous multivariate probability densities.” The sequential construction of such a sample proceeds sequentially by adding a new (T+1)-th point to the existing sample of y’s by maximising in x the discrepancy

(T+1)\mathbb E^Y[k(x,Y)]-\sum_{t=1}^T k(x,y_t)

where k(·,·) is a kernel, e.g. a Gaussian density. Hence a complexity that grows as O(T). The current paper suggests using Gibbs “sampling” to update one component of x at a time. Using the conditional version of the above discrepancy. Making the complexity grow as O(dT) in d dimensions.

I remain puzzled by the whole thing as these samples cannot be used as regular random or quasi-random samples. And in particular do not produce unbiased estimators of anything. Obviously. The production of such samples being furthermore computationally costly it is also unclear to me that they could even be used for quick & dirty approximations of a target sample.

A of A

Posted in Books, Kids, Statistics, Travel, University life with tags , , , , , , , , , , , , , , on November 30, 2017 by xi'an

Next June, at the same time as the ISBA meeting in Edinburgh, which is slowly taking shape, there will be an Analysis of Algorithms (AofA) meeting in Uppsala (Sweden) with Luc Devroye as the plenary Flajolet Award speaker. The full name of the conference is the 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms. While it is unfortunate the two conferences take place at the same time (and not in the same location), this also provides a continuity of conferences with the following week MCqMC in Rennes and the subsequent week summer school in simulation in Warwick (with Art Owen as the LMS Lecturer).

About our summer school, I want to point out that, thanks to several sponsors, we will be able to provide a consequent number of bursaries for junior researchers. This should be an additional incentive for attendees of the previous week Young Bayesian meeting (BAYSM) to remain the extra days nearby Warwick and attend this fantastic opportunity. Other instructors are Nicolas Chopin, Mark Huber and Jeff Rosenthal!

je reviendrai à Montréal [MCM 2017]

Posted in pictures, R, Running, Statistics, Travel with tags , , , , , , , , , , , , on November 3, 2016 by xi'an

Next summer of 2017, the biennial International Conference on Monte Carlo Methods and Applications (MCM) will take place in Montréal, Québec, Canada, on July 3-7. This is a mathematically-oriented meeting that works in alternance with MCqMC and that is “devoted to the study of stochastic simulation and Monte Carlo methods in general, from the theoretical viewpoint and in terms of their effective applications in different areas such as finance, statistics, machine learning, computer graphics, computational physics, biology, chemistry, and scientific computing in general. It is one of the most prominent conference series devoted to research on the mathematical aspects of stochastic simulation and Monte Carlo methods.” I attended one edition in Annecy three years ago and enjoyed very much the range of topics and backgrounds. The program is under construction and everyone is warmly invited to contribute talks or special sessions, with a deadline on January 20, 2017. In addition, Montréal is a Monte Carlo Mecca of sorts with leading researchers in the field like Luc Devroye and Pierre Lécuyer working there. (And a great place to visit in the summer!)

not converging to London for an [extra]ordinary Read Paper

Posted in Books, Kids, pictures, Statistics, Travel, University life with tags , , , , , , , on November 21, 2014 by xi'an

London by Delta, Dec. 14, 2011On December 10, I will alas not travel to London to attend the Read Paper on sequential quasi-Monte Carlo presented by Mathieu Gerber and Nicolas Chopin to The Society, as I fly instead to Montréal for the NIPS workshops… I am quite sorry to miss this event, as this is a major paper which brings quasi-Monte Carlo methods into mainstream statistics. I will most certainly write a discussion and remind Og’s readers that contributed (800 words) discussions are welcome from everyone, the deadline for submission being January 02.

density normalization for MCMC algorithms

Posted in Statistics, University life with tags , , , , , , , , on November 6, 2014 by xi'an

Another paper addressing the estimation of the normalising constant and the wealth of available solutions just came out on arXiv, with the full title of “Target density normalization for Markov chain Monte Carlo algorithms“, written by Allen Caldwell and Chang Liu. (I became aware of it by courtesy of Ewan Cameron, as it appeared in the physics section of arXiv. It is actually a wee bit annoying that papers in the subcategory “Data Analysis, Statistics and Probability” of physics do not get an automated reposting on the statistics lists…)

In this paper, the authors compare three approaches to the problem of finding

\mathfrak{I} = \int_\Omega f(\lambda)\,\text{d}\lambda

when the density f is unormalised, i.e., in more formal terms, when f is proportional to a probability density (and available):

  1. an “arithmetic mean”, which is an importance sampler based on (a) reducing the integration volume to a neighbourhood ω of the global mode. This neighbourhood is chosen as an hypercube and the importance function turns out to be the uniform over this hypercube. The corresponding estimator is then a rescaled version of the average of f over uniform simulations in ω.
  2.  an “harmonic mean”, of all choices!, with again an integration over the neighbourhood ω of the global mode in order to avoid the almost sure infinite variance of harmonic mean estimators.
  3. a Laplace approximation, using the target at the mode and the Hessian at the mode as well.

The paper then goes to comparing those three solutions on a few examples, demonstrating how the diameter of the hypercube can be calibrated towards a minimum (estimated) uncertainty. The rather anticlimactic conclusion is that the arithmetic mean is the most reliable solution as harmonic means may fail in larger dimension and more importantly fail to signal its failure, while Laplace approximations only approximate well quasi-Gaussian densities…

What I find most interesting in this paper is the idea of using only one part of the integration space to compute the integral, even though it is not exactly new. Focussing on a specific region ω has pros and cons, the pros being that the reduction to a modal region reduces needs for absolute MCMC convergence and helps in selecting alternative proposals and also prevents from the worst consequences of using a dreaded harmonic mean, the cons being that the region needs be well-identified, which means requirements on the MCMC kernel, and that the estimate is a product of two estimates, the frequency being driven by a Binomial noise.  I also like very much the idea of calibrating the diameter Δof the hypercube ex-post by estimating the uncertainty.

As an aside, the paper mentions most of the alternative solutions I just presented in my Monte Carlo graduate course two days ago (like nested or bridge or Rao-Blackwellised sampling, including our proposal with Darren Wraith), but dismisses them as not “directly applicable in an MCMC setting”, i.e., without modifying this setting. I unsurprisingly dispute this labelling, both because something like the Laplace approximation requires extra-work on the MCMC output (and once done this work can lead to advanced Laplace methods like INLA) and because other methods could be considered as well (for instance, bridge sampling over several hypercubes). As shown in the recent paper by Mathieu Gerber and Nicolas Chopin (soon to be discussed at the RSS!), MCqMC has also become a feasible alternative that would compete well with the methods studied in this paper.

Overall, this is a paper that comes in a long list of papers on constant approximations. I do not find the Markov chain of MCMC aspect particularly compelling or specific, once the effective sample size is accounted for. It would be nice to find generic ways of optimising the visit to the hypercube ω and to estimate efficiently the weight of ω. The comparison is solely run over examples, but they all rely on a proper characterisation of the hypercube and the ability to simulate efficiently f over that hypercube.