Archive for reparameterisation

parameter space for mixture models

Posted in Statistics, University life with tags , , , on March 24, 2017 by xi'an

“The paper defines a new solution to the problem of defining a suitable parameter space for mixture models.”

When I received the table of contents of the incoming Statistics & Computing and saw a paper by V. Maroufy and P. Marriott about the above, I was quite excited about a new approach to mixture parameterisation. Especially after our recent reposting of the weakly informative reparameterisation paper. Alas, after reading the paper, I fail to see the (statistical) point of the whole exercise.

Starting from the basic fact that mixtures face many identifiability issues, not only invariance by component permutation, but the possibility to add spurious components as well, the authors move to an entirely different galaxy by defining mixtures of so-called local mixtures. Developed by one of the authors. The notion is just incomprehensible for me: the object is a weighted sum of the basic component of the original mixture, e.g., a Normal density, and of k of its derivatives wrt its mean, a sort of parameterised Taylor expansion. Which implies the parameter is unidimensional, incidentally. The weights of this strange mixture are furthermore constrained by the positivity of the resulting mixture, a constraint that seems impossible to satisfy in the Normal case when the number of derivatives is odd. And hard to analyse in any case since possibly negative components do not enjoy an interpretation as a probability density. In exponential families, the local mixture is the original exponential family density multiplied by a polynomial. The current paper moves one step further [from the reasonable] by considering mixtures [in the standard sense] of such objects. Which components are parameterised by their mean parameter and a collection of weights. The authors then restrict the mean parameters to belong to a finite and fixed set, which elements are coerced by a maximum error rate on any compound distribution derived from this exponential family structure. The remainder of the paper discusses of the choice of the mean parameters and of an EM algorithm to estimate the parameters, with a confusing lower bound on the mixture weights that impacts the estimation of the weights. And no mention made of the positivity constraint. I remain completely bemused by the paper and its purpose: I do not even fathom how this qualifies as a mixture.

a response by Ly, Verhagen, and Wagenmakers

Posted in Statistics with tags , , , , , , , , on March 9, 2017 by xi'an

Following my demise [of the Bayes factor], Alexander Ly, Josine Verhagen, and Eric-Jan Wagenmakers wrote a very detailed response. Which I just saw the other day while in Banff. (If not in Schiphol, which would have been more appropriate!)

“In this rejoinder we argue that Robert’s (2016) alternative view on testing has more in common with Jeffreys’s Bayes factor than he suggests, as they share the same ‘‘shortcomings’’.”

Rather unsurprisingly (!), the authors agree with my position on the dangers to ignore decisional aspects when using the Bayes factor. A point of dissension is the resolution of the Jeffreys[-Lindley-Bartlett] paradox. One consequence derived by Alexander and co-authors is that priors should change between testing and estimating. Because the parameters have a different meaning under the null and under the alternative, a point I agree with in that these parameters are indexed by the model [index!]. But with which I disagree when arguing that the same parameter (e.g., a mean under model M¹) should have two priors when moving from testing to estimation. To state that the priors within the marginal likelihoods “are not designed to yield posteriors that are good for estimation” (p.45) amounts to wishful thinking. I also do not find a strong justification within the paper or the response about choosing an improper prior on the nuisance parameter, e.g. σ, with the same constant. Another a posteriori validation in my opinion. However, I agree with the conclusion that the Jeffreys paradox prohibits the use of an improper prior on the parameter being tested (or of the test itself). A second point made by the authors is that Jeffreys’ Bayes factor is information consistent, which is correct but does not solved my quandary with the lack of precise calibration of the object, namely that alternatives abound in a non-informative situation.

“…the work by Kamary et al. (2014) impressively introduces an alternative view on testing, an algorithmic resolution, and a theoretical justification.”

The second part of the comments is highly supportive of our mixture approach and I obviously appreciate very much this support! Especially if we ever manage to turn the paper into a discussion paper! The authors also draw a connection with Harold Jeffreys’ distinction between testing and estimation, based upon Laplace’s succession rule. Unbearably slow succession law. Which is well-taken if somewhat specious since this is a testing framework where a single observation can send the Bayes factor to zero or +∞. (I further enjoyed the connection of the Poisson-versus-Negative Binomial test with Jeffreys’ call for common parameters. And the supportive comments on our recent mixture reparameterisation paper with Kaniav Kamari and Kate Lee.) The other point that the Bayes factor is more sensitive to the choice of the prior (beware the tails!) can be viewed as a plus for mixture estimation, as acknowledged there. (The final paragraph about the faster convergence of the weight α is not strongly

weakly informative reparameterisations for location-scale mixtures

Posted in Books, pictures, R, Statistics, University life with tags , , , , , , on January 19, 2017 by xi'an

fitted_density_galaxy_data_500itersWe have been working towards a revision of our reparameterisation paper for quite a while now and too advantage of Kate Lee visiting Paris this fortnight to make a final round: we have now arXived (and submitted) the new version. The major change against the earlier version is the extension of the approach to a large class of models that include infinitely divisible distributions, compound Gaussian, Poisson, and exponential distributions, and completely monotonic densities. The concept remains identical: change the parameterisation of a mixture from a component-wise decomposition to a construct made of the first moment(s) of the distribution and of component-wise objects constrained by the moment equation(s). There is of course a bijection between both parameterisations, but the constraints appearing in the latter produce compact parameter spaces for which (different) uniform priors can be proposed. While the resulting posteriors are no longer conjugate, even conditional on the latent variables, standard Metropolis algorithms can be implemented to produce Monte Carlo approximations of these posteriors.

empirical Bayes, reference priors, entropy & EM

Posted in Mountains, Statistics, Travel, University life with tags , , , , , , , , , , , on January 9, 2017 by xi'an

Klebanov and co-authors from Berlin arXived this paper a few weeks ago and it took me a quiet evening in Darjeeling to read it. It starts with the premises that led Robbins to introduce empirical Bayes in 1956 (although the paper does not appear in the references), where repeated experiments with different parameters are run. Except that it turns non-parametric in estimating the prior. And to avoid resorting to the non-parametric MLE, which is the empirical distribution, it adds a smoothness penalty function to the picture. (Warning: I am not a big fan of non-parametric MLE!) The idea seems to have been Good’s, who acknowledged using the entropy as penalty is missing in terms of reparameterisation invariance. Hence the authors suggest instead to use as penalty function on the prior a joint relative entropy on both the parameter and the prior, which amounts to the average of the Kullback-Leibler divergence between the sampling distribution and the predictive based on the prior. Which is then independent of the parameterisation. And of the dominating measure. This is the only tangible connection with reference priors found in the paper.

The authors then introduce a non-parametric EM algorithm, where the unknown prior becomes the “parameter” and the M step means optimising an entropy in terms of this prior. With an infinite amount of data, the true prior (meaning the overall distribution of the genuine parameters in this repeated experiment framework) is a fixed point of the algorithm. However, it seems that the only way it can be implemented is via discretisation of the parameter space, which opens a whole Pandora box of issues, from discretisation size to dimensionality problems. And to motivating the approach by regularisation arguments, since the final product remains an atomic distribution.

While the alternative of estimating the marginal density of the data by kernels and then aiming at the closest entropy prior is discussed, I find it surprising that the paper does not consider the rather natural of setting a prior on the prior, e.g. via Dirichlet processes.

non-local priors for mixtures

Posted in Statistics, University life with tags , , , , , , , , , , , , , , , on September 15, 2016 by xi'an

[For some unknown reason, this commentary on the paper by Jairo Fúquene, Mark Steel, David Rossell —all colleagues at Warwick— on choosing mixture components by non-local priors remained untouched in my draft box…]

Choosing the number of components in a mixture of (e.g., Gaussian) distributions is a hard problem. It may actually be an altogether impossible problem, even when abstaining from moral judgements on mixtures. I do realise that the components can eventually be identified as the number of observations grows to infinity, as demonstrated foFaith, Barossa Valley wine: strange name for a Shiraz (as it cannot be a mass wine!, but nice flavoursr instance by Judith Rousseau and Kerrie Mengersen (2011). But for a finite and given number of observations, how much can we trust any conclusion about the number of components?! It seems to me that the criticism about the vacuity of point null hypotheses, namely the logical absurdity of trying to differentiate θ=0 from any other value of θ, applies to the estimation or test on the number of components of a mixture. Doubly so, one might argue, since a very small or a very close component is undistinguishable from a non-existing one. For instance, Definition 2 is correct from a mathematical viewpoint, but it does not spell out the multiple contiguities between k and k’ component mixtures.

The paper starts with a comprehensive coverage of l’état de l’art… When using a Bayes factor to compare a k-component and an h-component mixture, the behaviour of the factor is quite different depending on which model is correct. Essentially overfitted mixtures take much longer to detect than underfitted ones, which makes intuitive sense. And BIC should be corrected for overfitted mixtures by a canonical dimension λ between the true and the (larger) assumed number of parameters  into

2 log m(y) = 2 log p(y|θ) – λ log O(n) + O(log log n)

I would argue that this purely invalidates BIG in mixture settings since the canonical dimension λ is unavailable (and DIC does not provide a useful substitute as we illustrated a decade ago…) The criticism about Rousseau and Mengersen (2011) over-fitted mixture that their approach shrinks less than a model averaging over several numbers of components relates to minimaxity and hence sounds both overly technical and reverting to some frequentist approach to testing. Replacing testing with estimating sounds like the right idea.  And I am also unconvinced that a faster rate of convergence of the posterior probability or of the Bayes factor is a relevant factor when conducting

As for non local priors, the notion seems to rely on a specific topology for the parameter space since a k-component mixture can approach a k’-component mixture (when k'<k) in a continuum of ways (even for a given parameterisation). This topology seems to be summarised by the penalty (distance?) d(θ) in the paper. Is there an intrinsic version of d(θ), given the weird parameter space? Like one derived from the Kullback-Leibler distance between the models? The choice of how zero is approached clearly has an impact on how easily the “null” is detected, the more because of the somewhat discontinuous nature of the parameter space. Incidentally, I find it curious that only the distance between means is penalised… The prior also assumes independence between component parameters and component weights, which I think is suboptimal in dealing with mixtures, maybe suboptimal in a poetic sense!, as we discussed in our reparameterisation paper. I am not sure either than the speed the distance converges to zero (in Theorem 1) helps me to understand whether the mixture has too many components for the data’s own good when I can run a calibration experiment under both assumptions.

While I appreciate the derivation of a closed form non-local prior, I wonder at the importance of the result. Is it because this leads to an easier derivation of the posterior probability? I do not see the connection in Section 3, except maybe that the importance weight indeed involves this normalising constant when considering several k’s in parallel. Is there any convergence issue in the importance sampling solution of (3.1) and (3.3) since the simulations are run under the local posterior? While I appreciate the availability of an EM version for deriving the MAP, a fact I became aware of only recently, is it truly bringing an improvement when compared with picking the MCMC simulation with the highest completed posterior?

The section on prior elicitation is obviously of central interest to me! It however seems to be restricted to the derivation of the scale factor g, in the distance, and of the parameter q in the Dirichlet prior on the weights. While the other parameters suffer from being allocated the conjugate-like priors. I would obviously enjoy seeing how this approach proceeds with our non-informative prior(s). In this regard, the illustration section is nice, but one always wonders at the representative nature of the examples and the possible interpretations of real datasets. For instance, when considering that the Old Faithful is more of an HMM than a mixture.